Skip to main content
Log in

Developmental profile of storage reserve accumulation in soybean somatic embryos

  • Embryo Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Soybean somatic embryos were developed as a model for investigating the developmental relationships of lipid biosynthesis and accumulation in this important crop. Batch cultures of embryos grown for 8 wk in liquid culture medium exhibited typical sigmoidal growth kinetics as they passed through characteristic globular, heart, torpedo, and cotyledon stages. Exponential growth occurred for the first 4 wk in culture with net growth terminating when total embryo fresh weight per culture flask reached a maximum of 4–4.5 g at 6 wk. This was followed by a slight decrease in embryo fresh weight (FW) and the onset of apparent tissue senescence as judged by yellowing and browning of embryos. On a FW basis, embryos accumulated up to 4% protein, 2.5% soluble sugars, 1.9% starch, and 1.5% lipid relatively early in development. Levels decreased to 0.8% protein, 0.5% soluble sugars, 0.03% starch, and 0.09% lipid at the end of the culture period. On a mass percent basis, lipid extracts were comprised of approximately 80–90% polar lipid early in embryo development. This shifted to 56% storage lipid (triacylglycerol) and 44% polar lipid after 4–5 wk in culture and then reverted back to 91% and 9% polar vs. storage lipid, respectively, by the end of the 8-wk culture period. On the average, polar and storage lipid fractions were comprised of 24% palmitic acid, 7% stearic acid, 8% oleic acid, 36% linoleic acid, and 26% linolenic acid. However, the amounts of linoleic and linolenic acids declined sharply during embryo senescence at the end of the culture period, with corresponding increases in the combined amounts of palmitic and stearic acids. This is the first report that documents the progress of storage reserve accumulation in soybean somatic embryos in relation to their continuous growth in liquid batch cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Adams C. A.; Rinne R. W.; Fjerstad M. C. Starch deposition and carbohydrase activities in developing and germinating soya bean seeds. Ann. Bot. 45: 577–582; 1980.

    CAS  Google Scholar 

  • Bailey M. A.; Boerma H. R.; Parrott W. A. Genotype-specific optimization of plant regeneration from somatic embryos of soybean. Plant Sci. 93: 117–120; 1993.

    Article  CAS  Google Scholar 

  • Buchhein J. A.; Colburn S. M.; Ranch J. P. Maturation of soybean somatic embryos and the transition to plantlet growth. Plant Physiol. 89: 768–775; 1989.

    Article  Google Scholar 

  • Chanprame S.; Kuo T. M.; Widholm J. M. Soluble carbohydrate content of soybean [Glycine max (L.) Merr.] somatic and zygotic embryos during development. Vitro Cell Dev. Biol. Plant 34: 64–68; 1998.

    Article  CAS  Google Scholar 

  • Christou P.; Yang N. S. Developmental aspects of sobean (Glycine max) somatic embryogenesis. Ann. Bot. 64: 225–234; 1989.

    CAS  Google Scholar 

  • Crawford N. M.; Kahn M. L.; Leustek T.; Long S. R. Nitrogen and sulfur. In: Buchanan B. B.; Gruissem W.; Jones R. L. (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 786–849; 2000.

    Google Scholar 

  • da Silva P. M. F. R.; Eastmond P. J.; Hill L. M.; Smith A. M.; Rawsthorne S. Starch metabolism in developing embryos of oilseed rape. Planta 203: 480–487; 1997.

    Article  Google Scholar 

  • Dahmer M. L.; Collins G. B.; Hildebrand D. F. Lipid content and composition of soybean somatic embryos. Crop. Sci. 31: 741–746; 1991.

    Article  CAS  Google Scholar 

  • Dahmer M. L.; Hildebrand D. F.; Collins G. B. Comparative protein accumulation patterns in soybean somatic and zygotic embryos. Vitro Cell Dev. Biol. 28P: 106–114; 1992.

    CAS  Google Scholar 

  • Eastmond P. J.; Rawsthorne S. Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryos. Plant Physiol. 122: 767–774; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Finer J. J.; Nagasawa A. Development of an embryogenic suspension culture of soybean [Glycine max (L.) Merrill]. Plant Cell Tissue Organ Cult. 15: 126–136; 1988.

    Article  Google Scholar 

  • Gamborg O. L.; Miller R. A.; Ojima K. Nutrient requirement of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Jamieson G. R.; Reid E. H. The occurrence of hexadeca-7,10,13-trienoic acid in the leaf lipids of angiosperms. Phytochemistry 10: 1837–1843; 1971.

    Article  CAS  Google Scholar 

  • Kinney A. J.; Clemente T. E. Modifying soybean oil for enhanced performance in biodiesel blends. Fuel Process. Tech. 86: 1137–1147; 2005.

    Article  CAS  Google Scholar 

  • Lazzeri P. A.; Hildebrand D. F.; Collins G. B. A procedure for plant regeneration from immature cotyledon tissue of soybean. Plant Mol. Biol. Rep. 3: 129–135; 1985.

    Article  Google Scholar 

  • Lippmann B.; Lippmann G. Induction of somatic embryos in cotyledonary tissue of soybean Glycine max L. Merr. Plant Cell Rep. 3: 215–218; 1984.

    Article  CAS  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Norton G.; Harris J. F. Compositional changes in developing rape seed (Brassica napus L.). Planta 123: 163–174; 1975.

    Article  CAS  Google Scholar 

  • Orzechowski S. Starch metabolism in leaves. Acta Biochim. Pol. 55: 435–455; 2008.

    PubMed  CAS  Google Scholar 

  • Parrott W. A.; Clemente T. E. Transgenic soybean. In: Specht J. E.; Boerma H. R. (eds) Soybeans: improvement, production, and uses. Agronomy monograph no. 16. 3rd ed. ASA-CSA-SSSA, Madison, pp 265–302; 2004.

    Google Scholar 

  • Parrott W. A.; Dryden G.; Vogt S.; Hildebrand D. F.; Collins G. B.; Williams E. G. Optimization of somatic embryogenesis and embryo germination in soybean. Vitro Cell Dev. Biol. 24: 817–820; 1988.

    Article  CAS  Google Scholar 

  • Ranch J. P.; Oglesby L.; Zielinski A. C. Plant regeneration from embryo-derived tissue cultures of soybeans. Vitro Cell Dev. Biol. 21: 653–658; 1985.

    Article  Google Scholar 

  • Rawsthorne S. Carbon flux and fatty acid synthesis in plants. Progr. Lipid Res. 41: 182–196; 2002.

    Article  CAS  Google Scholar 

  • Samoylov V. M.; Tucker D. M.; Thibaud-Nissen F.; Parrott W. A. A liquid-medium-based protocol for rapid regeneration from embryogenic soybean cultures. Plant Cell Rep. 18: 49–54; 1998.

    Article  CAS  Google Scholar 

  • Schmidt M. A.; Tucker D. M.; Cahoon E. B.; Parrott W. A. Towards normalization of soybean somatic embryo maturation. Plant Cell Rep. 24: 383–391; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker R. C.; Hammond E. G. Fatty acid composition of soybean (Glycine max (L.) Merr.) somatic embryos. Vitro Cell Dev. Biol. 24: 829–832; 1988.

    Article  CAS  Google Scholar 

  • Slawinska J.; Obendorf R. L. Soybean somatic embryo maturation: composition, respiration and water relations. Seed Sci. Res. 1: 251–262; 1991.

    Article  CAS  Google Scholar 

  • Smith A. M. Major differences in isoforms of starch-branching enzyme between developing embryos of round- and wrinkled-seeded peas (Pisum sativum L.). Planta 175: 270–279; 1988.

    Article  CAS  Google Scholar 

  • Tetlow I. J.; Rawsthorne S.; Raines C.; Emes M. J. Plastid metabolic pathways. In: Møller S. G. (ed) Plastids. CRC, Boca Raton, pp 60–125; 2005.

    Google Scholar 

  • Thompson J. E.; Froese C. D.; Madey E.; Smith M. D.; Hong Y. Lipid metabolism during plant senescence. Progr. Lipid Res. 37: 119–141; 1998.

    Article  CAS  Google Scholar 

  • White C. A.; Kennedy J. F. Oligosaccharides. In: Chaplin M. F.; Kennedy J. F. (eds) Carbohydrate analysis—a practical approach. IRL Press, Oxford, pp 37–54; 1986.

    Google Scholar 

  • Wilson R. F. Seed composition. In: Specht J. E.; Boerma H. R. (eds) Soybeans: improvement, production, and uses. Agronomy monograph no. 16. 3rd ed. ASA-CSA-SSSA, Madison, pp 621–677; 2004.

    Google Scholar 

  • Yang Z.; Ohlrogge J. B. Turnover of fatty acids during natural senescence of Arabidopsis, Brachypodium and switchgrass and in Arabidopsis beta-oxidation mutants. Plant Physiol. 150: 1981–1989; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Yazdi-Samadi B.; Rinne R. W.; Seif R. D. Components of developing soybean seeds: oil, protein, sugars, starch, organic acids, and amino acids. Agron. J. 69: 481–486; 1977.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the expert and generous technical assistance provided by Wayne Parrott and Donna Tucker in the Department of Crop and Soil Sciences at the University of Georgia in helping us implement their method for the in vitro growth of soybean somatic embryos. We are also grateful to Ian Stocks in the Department of Entomology, Soils and Plant Sciences at Clemson University for his initial help with the photomicrography equipment used in this investigation. This research was supported by Project no. 8233 provided to S. A. Sparace from the United Soybean Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore A. Sparace.

Additional information

Editor: John Finer

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Young, T.E., Clark, K.R. et al. Developmental profile of storage reserve accumulation in soybean somatic embryos. In Vitro Cell.Dev.Biol.-Plant 47, 725–733 (2011). https://doi.org/10.1007/s11627-011-9375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-011-9375-2

Keywords

Navigation