Skip to main content
Log in

Amelioration of salinity tolerance in Solanum tuberosum L. by exogenous application of ascorbic acid

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The present investigation envisaged revealing the role of exogenous application of ascorbic acid in increasing resistance against NaCl stress. Shoot apices from 60-d-old, in vitro-grown plants of two commercially important cultivars of Solanum tuberosum L., cvs. Desiree and Cardinal, were inoculated on Murashige and Skoog (MS) medium supplemented with 0.5 mM ascorbic acid for 72 h as a pretreatment. Pretreated and non-pretreated shoot apices were transferred to MS medium containing different concentrations of NaCl (0–140 mM; eight treatments). Results were recorded for morphological (shoot length, shoot number, root length, root number, and number of nodes) and biochemical features (protein, peroxidase, catalase, and superoxide dismutase activities) after 60 d of salt treatment. Similarly, 60-d-old, well-proliferated callus cultures were also pretreated with ascorbic acid for 24 h and transferred to an optimized callus proliferation medium containing different concentrations of salt. Results were recorded after 60 d of salt treatment for percentage relative fresh weight growth and biochemical parameters. Salinity severely inhibited all the growth parameters in both the cultivars. Pretreatment with ascorbic acid to both salt-treated plants and callus cultures showed significant differences with respect to almost all of the growth and biochemical parameters studied. Protein content as well as catalase and superoxide dismutase activities increased significantly in both the cultivars, although peroxidase activity showed a decreasing trend in ascorbic acid-pretreated plants as well as callus cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Agastian P.; Kingsley S. J.; Vivekanandan M. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthesis 38: 287–290; 2000.

    Article  CAS  Google Scholar 

  • Al-Hakimi A. M. A.; Hamada A. M. Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamin or sodium salicylate. Biol. Plant. 44(2): 253–261; 2001.

    Article  Google Scholar 

  • Asada K. Ascorbate peroxidase a hydrogen peroxide scavenging enzyme in plants. Physiol. Plant. 85: 235–241; 1992.

    Article  CAS  Google Scholar 

  • Ashraf M.; Foolad R. M. Pre-sowing seed treatment: a shotgun approach to improve germination, plant growth and crop yield under saline and non-saline conditions. Adv. Agron. 88: 223–271; 2005.

    Article  Google Scholar 

  • Ashraf M.; Harris P. J. C. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166(1): 3–16; 2004.

    Article  CAS  Google Scholar 

  • Azevedo-Neto A. D.; Jose T. P.; Joaquim E. F.; Carlos E. B. A.; Eneas G. F. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Experi. Bot. 56: 87–94; 2006.

    Article  CAS  Google Scholar 

  • Azooz M. M.; Shaddad M. A.; Abdel-Latef A. A. The accumulation and compartmentation of proline in relation to salt tolerance of three sorghum cultivars. Ind. J. Plant Physiol. 9: 1–8; 2004.

    CAS  Google Scholar 

  • Beers R. F.; Sizer I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195: 133–140; 1952.

    PubMed  CAS  Google Scholar 

  • Benavides M. P.; Marconi P. L.; Gallego S. M.; Comba M. E.; Tomaro M. L. Relationship between antioxidant defense systems and salt tolerance in Solanum tuberosum. Aust. J. Plant Physiol. 27: 273–278; 2000.

    CAS  Google Scholar 

  • Cheeseman J. M. Mechanism of salinity tolerance in plants. Plant Physiol. 87: 547–550; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Cherian S.; Reddy M. P.; Pandya J. B. Studies on salt tolerance in Avicennia marina (Forstk) vierh: effect of NaCl salinity on growth, ion accumulation and enzyme activity. Ind. J. Plant Physiol. 4: 266–270; 1999.

    CAS  Google Scholar 

  • Chiru S. C.; Gheorghe O.; Paul C. S. Preface of the special issue 31(3/4): potato in a changing world. Potato Res. 51: 215–216; 2008.

    Article  Google Scholar 

  • Citterio S.; Sgorbati S.; Scippa S.; Sparvoli E. Ascorbic acid effect on the onset of cell proliferation in pea root. Physiol. Plant. 92: 601–607; 1994.

    Article  CAS  Google Scholar 

  • Croughan T. P.; Stavarek S. J.; Rains D. W. In vitro development of salt resistant plants. J. Experi. Bot. 24: 317–324; 1981.

    Article  Google Scholar 

  • Ekanayake I. J.; Dodds J. H. In vitro testing for the effects of salt stress on growth and survival of sweet potato. Scientia. Hortic. 55(3): 239–248; 1993.

    Article  Google Scholar 

  • F.A.O. Global network on integrated soil management for sustainable use of salt-affected soils. Rome, Italy: land and plant nutrition management services. http://www.fao.org/ag/agl/agll/spush 2005.

  • Farhatullah; Rashid M.; Raziuddin. In vitro effect of salt on the vigor of potato (Solanum tuberosum L) plantlets. Biotech 1(2–4): 73–77; 2002.

    Google Scholar 

  • Fidalgo F.; Santos A.; Santos I.; Salema R. Effect of long-term salt stress on antioxidant defense system, leaf water relations and chloroplast ultra-structure of potato plant. Ann. Appl. Biol. 145: 185–192; 2004.

    Article  CAS  Google Scholar 

  • Gadallah M. A. A. Effects of acid mist and ascorbic acid treatment on the growth, stability of leaf membranes, chlorophyll content and some mineral elements of Carthamus tinctorius, the safflower. Water Air Soil Pollut. 118: 311–327; 2000.

    Article  CAS  Google Scholar 

  • Harinasut P.; Darinee P.; Kannarat R.; Rangsi C. Salinity effects on antioxidant enzymes in mulberry cultivar. Sci. Asia. 29: 109–113; 2003.

    Article  CAS  Google Scholar 

  • Heber U.; Miyake C.; Mano J.; Ohno C.; Asada K. Monodehydroascorbate radical detected by electron paramagnetic resonance spectrometry is sensitive probe of oxidative stress in intact leaves. Plant Cell Physiol. 37: 1066–1072; 1996.

    CAS  Google Scholar 

  • Hernandez J. A.; Olmos E.; Corpas F. J.; Sevilla F.; Del-Rio L. A. Salt induced oxidative stress in chloroplast of pea plant. Plant Sci. 105: 151–167; 1995.

    Article  CAS  Google Scholar 

  • Jaleel C. A.; Gopi R.; Manivannan P.; Panneerselvam R. Antioxidative potentials as a protective mechanism in Catharanthus roseus (L.) G. Don. Plants under salinity stress. Turk J. Bot. 31: 245–251; 2007.

    Google Scholar 

  • Karimi G.; Ghorbanli M.; Heidari H.; Khavari Nejad R. A.; Assareh M. H. The effect of NaCl on growth, water relation, osmolyte and ion content in Kochia prostrata. Biol. Plant. 49(2): 301–304; 2005.

    Article  Google Scholar 

  • Khan M. A.; Ahmad M. Z.; Hameed A. Effect of sea salt and l-ascorbic acid on the seed germination of halophytes. J. Arid Environ. 67: 535–540; 2006.

    Article  Google Scholar 

  • Luck H. Methods in enzymatic analysis. 2nd ed. Bergmeyer Academic, New York, p 885; 1974.

    Google Scholar 

  • Maral J.; Puget K.; Michelson A. M. Comparative study of superoxide dismutase, catalase and glutathione peroxidase levels in erythrocytes of different animals. Biochem. Biophys. Res. Commun. 77: 1525–1535; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Martinez C. A.; Moacyr M.; Elisonete G. L. In vitro salt tolerance and proline accumulation in Andean potato (Solanum spp.) differing in frost resistance. Plant Sci. 116: 177–184; 1996.

    Article  CAS  Google Scholar 

  • Mckenzie R. C. Tolerance of plants to soil salinity. Proceedings of the dry land salinity control Workshop, Calgary, Alberta Agriculture, Food and Rural Development, Conservation and Development Branch, pp 245–251; 1988.

  • Mittova V.; Tal M.; Volokita M.; Guy M. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative system in response to salt-induced oxidative stress in the wild salt tolerant tomato species Lycopersicon pennellii. Plant Cell. Environ. 26: 845–856; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Molassiotis A. N.; Sotiropoulos T.; Tanou G.; Kofidis G.; Diamantidis G.; Therios I. Antioxidant and anatomical responses in shoot culture of the apple rootstock MM 106 treated with NaCl, KCl, mannitol or sorbitol. Biolog. Plant. 50(1): 61–68; 2006.

    Article  CAS  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Muthukumarasamy M.; Dutta-Gupta S.; Panneerselvam R. Enhancement of peroxidase, polyphenol oxidase and superoxide dismutase activities by triadimefon in NaCl stressed Raphanus sativus L. Biol. Plant. 43: 317–320; 2000.

    Article  CAS  Google Scholar 

  • Nakano Y.; Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiol. 22: 867–880; 1981.

    CAS  Google Scholar 

  • Noctor G.; Foyer C. H. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 49: 249–279; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Prescott A. G.; John P. Dioxygenases: molecular structure and role in metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 245–271; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Racusen D.; Johnstone D. B. Estimation of protein in cellular material. Nature 191: 292–493; 1961.

    Article  Google Scholar 

  • Rahnama H.; Ebrahimzadeh E.; Ghareyazie B. Antioxidant enzymes responses to NaCl stress in calli of four potato cultivars. Pak. J. Bot. 35: 579–586; 2003.

    Google Scholar 

  • Reddy A. R.; Chiatanya K. V.; Vivekanadan M. Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161: 1189–1202; 2004.

    Article  CAS  Google Scholar 

  • Sairam R. K.; Srivastava G. C.; Agarawal S.; Meena R. C. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol. Plant. 49(1): 85–91; 2005.

    Article  CAS  Google Scholar 

  • Sasikala D. P. P.; Prasad P. V. D. Influence of salinity on auxiliary bud cultures of six low land tropical cultivar of potato (Solanum tuberosum). Plant Cell Tiss. Org. Cult. 32: 185–191; 1993.

    Article  Google Scholar 

  • Shalata A.; Neumann P. M. Exogenous ascorbic acid (vitamin C) increases resistance to salt and reduce lipid peroxidation. J. Exp. Bot. 52: 2207–2211; 2001.

    PubMed  CAS  Google Scholar 

  • Shigeoka S.; Takahiro I.; Masahiro T.; Yoshiko M.; Toru T.; Yukinori Y.; Kazuya Y. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 53: 1305–1319; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N. Ascorbate, tocopherol and cartenoids: metabolism, pathway engineering and functions. In: Smirnoff (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 53–86; 2005.

    Chapter  Google Scholar 

  • Sreenivasulu N.; Grimm B.; Wobus U.; Weschke W. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet. Physiol. Plant. 109: 435–442; 2000.

    Article  CAS  Google Scholar 

  • Vaidyanathan H.; Sivakumar P.; Chakarbrti R.; Thomas G. Scavenging of reactive oxygen species in NaCl stressed rice (Oryza sativa.) differential response in salt tolerant and sensitive varieties. Plant Sci. 165: 1411–1418; 2003.

    Article  CAS  Google Scholar 

  • Wahid A.; Ghazanfar A. Possible involvement of some secondary metabolites in salinity tolerance of sugarcane. J. Plant Physiol. 163: 723–730; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Wahid A.; Perveen M.; Gelani S.; Basra S. M. A. Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J. Plant Physiol. 164: 283–294; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Yu B. P. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74: 139–162; 1994.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Financial support to F.A by Higher Education Commission (HEC project 20-143) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faheem Aftab.

Additional information

Editor: Woong-Young Soh

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajid, Z.A., Aftab, F. Amelioration of salinity tolerance in Solanum tuberosum L. by exogenous application of ascorbic acid. In Vitro Cell.Dev.Biol.-Plant 45, 540–549 (2009). https://doi.org/10.1007/s11627-009-9252-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9252-4

Keywords

Navigation