Skip to main content
Log in

Development of a temporary immersion system (RITA®) for mass production of sugarcane (Saccharum spp. interspecific hybrids)

  • Micropropagation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Commercial micropropagation of sugarcane is largely determined by the clonal fidelity and the cost of plants produced. Rapid production of plants in vitro reduces the frequency of offtypes in many species. By exploiting the concept of transverse thin cell layer culture, we have developed a rapid, high frequency direct plant regeneration system, called SmartSett®, for commercial sugarcane cultivars grown in Australia. Similar to conventional micropropagation, labour remains the major cost of this plant production system. Hence, to reduce the labour component, we have integrated the SmartSett® system with the RITA® temporary immersion bioreactor. Thin transverse leaf sections or fragmented leaves cultured on agar-based SmartSett® shoot induction medium were used as the starting material for RITA®. Shoot initiation on semi-solid medium prior to transferring to RITA®, culture immersion frequency, explant size and genotype determined the productivity (number of plants produced per unit culture) of the system. Results obtained with cultivar Q165 indicate that explants cultured for 45 d on SmartSett® shoot induction medium were the most prolific, producing on average 275 shoots per vessel after 45 d of culture in RITA with 1 min immersion every 12 or 24 h. Using the fragmented tissue, 14-d-old explants and 3-mm leaf tissue fragments were the most productive. Experiments with three cultivars (Q117, Q165 and Q205) showed that RITA® culture conditions need to be optimised for each cultivar for maximum plant production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Aitken-Christie J.; Jones C. Towards automation: Radiata pine shoot hedges in vitro. Plant Cell Tiss Org Cult. 8: 185–196; 1987 doi:10.1007/BF00040945.

    Article  Google Scholar 

  • Akita M.; Takayama S. Stimulation of potato (Solanum tuberosum L.) tuberization by semicontinuous liquid medium surface level control. Plant Cell Rep. 13: 184–187; 1994.

    CAS  Google Scholar 

  • Albarran J.; Bertrand B.; Lartaud M.; Etienne H. Cycle characteristics in a temporary immersion bioreactor affect regeneration, morphology, water and mineral status of coffee (Coffea arabica) somatic embryos. Plant Cell Tiss Org Cult. 81: 27–36; 2005 doi:10.1007/s11240-004-2618-8.

    Article  CAS  Google Scholar 

  • Alvard D.; Cote F.; Teisson C. Comparison of methods of liquid medium culture for banana micropropagation. Effect of temporary immersion of explants. Plant Cell Tiss Org Cult. 32: 55–60; 1993 doi:10.1007/BF00040116.

    Article  Google Scholar 

  • Australian Bureau of Agricultural and Resource Economics (ABARE) Australian Commodities, Forecasts and Issues, Commonwealth of Australia 12:301–303; 2005

  • Australian Sugar Year Book (2008) Rural Press (QLD) Pty Ltd.

  • Berthouly, M.; Etienne, H. Temporary immersion system: a new concept for use liquid medium in mass propagation. In: Hvoslef-Eide T (ed) First Int. Symp. Liquid Systems for in vitro mass propagation. Aas, Norway, 2002 p 37

  • Chakrabarty D.; Hahn E. J.; Yoon Y. J.; Paek K. Y. Micropropagation of apple rootstock M.9 EMLA using bioreactor. J Hortic Sci Biotechnol. 78: 605–609; 2003.

    CAS  Google Scholar 

  • Escalant J. V.; Teisson C.; Côte F. Amplified somatic embryogenesis from male flowers of triploid banana and plantain cultivars (Musa spp.). In Vitro Cell Dev Biol Plant. 30: 181–186; 1994 doi:10.1007/BF02631441.

    Google Scholar 

  • Escalona M.; Lorenzo J. C.; Gonzalez B.; Daquinta M.; Gomzalez J. L.; Desjardins Y.; Borrota C. G. Pineapple (Ananas comosus L Merr) micropropagation in temporary immersion systems. Plant Cell Rep. 18: 743–748; 1999 doi:10.1007/s002990050653.

    Article  CAS  Google Scholar 

  • Etienne H.; Berthouly M. Temporary immersion systems in plant micropropagation. Plant Cell Tiss Org Cult. 69: 215–231; 2002 doi:10.1023/A:1015668610465.

    Article  Google Scholar 

  • Etienne-Barry D.; Bertrand B.; Vasquez N.; Etienne H. Direct sowing of Coffea arabica somatic embryos mass-produced in a bioreactor and regeneration of plants. Plant Cell Rep. 19: 111–117; 1999 doi:10.1007/s002990050720.

    Article  CAS  Google Scholar 

  • Jackson, M. B. Ventilation of plant tissue cultures. In: Hvoslef-Eide (ed) First Int Symp Liquid Systems for in vitro mass propagation Aas, Norway p 56; 2002

  • Jimenez E.; Perez N.; Feria M.; Barbon R.; Capote A.; Chavez M.; Quiala E.; Perez J. C. Improved Production of potato microtubers using a temporary immersion system. Plant Cell Tiss Org Cult. 59: 19–23; 1999 doi:10.1023/A:1006312029055.

    Article  Google Scholar 

  • Jova M. C.; Kosky R. G.; Perez M.; Pino A. S.; Vega V. M.; Torres J. L.; Cabrera A. R.; Garcia M. G.; de Ventura J. C. Production of Yam microtubers using a temporary immersion system. Plant Cell Tiss Org Cult. 83: 103–107; 2005 doi:10.1007/s11240-005-4853-z.

    Article  CAS  Google Scholar 

  • Kongbangkerd A.; Wawrosch C. Improved shoot regeneration from nodules of Charybdis numidica in a temporary immersion system. J Hortic Sci Biotechnol. 78: 650–655; 2003.

    CAS  Google Scholar 

  • Lakshmanan, P.; Geijskes, R. J.; Elliott, A. R.; Nutt, K.; Berding, N.; Grof, C. P. L.; Smith, G. R. Plant regeneration. PCT Patent Application WO 01/82684; 2001

  • Lakshmanan P.; Geijskes J. R.; Wang L.; Elliott A.; Grof C. P. L.; Berding N.; Smith G. R. Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture. Plant Cell Rep. 25: 1007–1015; 2006 doi:10.1007/s00299-006-0154-1.

    Article  PubMed  CAS  Google Scholar 

  • Lakshmanan P.; Siew Keng N.; Loh C. S.; Goh C. J. Auxin, cytokinin and ethylene differentially regulate specific developmental states associated with shoot bud morphogenesis in leaf tissues of mangosteen (Garcinia mangostana L.) cultured in vitro. Plant Cell Physiol. 38: 59–64; 1997.

    CAS  Google Scholar 

  • Lorenzo J. C.; Blanco M.; Pelaez O.; Gonzalez A.; Cid M.; Iglesias A.; Gonzalez B.; Escalona M.; Espinosa P.; Borroto C. Sugarcane micropropagation and phenolic excretion. Plant Cell Tiss Org Cult. 65: 1–8; 2001b doi:10.1023/A:1010666115337.

    Article  CAS  Google Scholar 

  • Lorenzo J. C.; Gonzalez B. L.; Escalona M.; Teisson C.; Espinosa P.; Borrota C. G. Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tiss Org Culti. 54: 197–200; 1998 doi:10.1023/A:1006168700556.

    Article  CAS  Google Scholar 

  • Lorenzo J. C.; Ojeda E.; Espinosa A.; Borrota C. Field performance of temporary immersion bioreactor-derived sugarcane plants. In Vitro Cell Dev Biol Plant. 37: 803–806; 2001a doi:10.1007/s11627-001-0133-8.

    Article  Google Scholar 

  • Martre P.; Lacan D.; Just D.; Teisson C. Physiological effects of temporary immersion on Hevea brasiliensis callus. Plant Cell Tiss Org Cult. 67: 25–35; 2001 doi:10.1023/A:1011666531233.

    Article  CAS  Google Scholar 

  • McAlister B.; Finnie J.; Watt M. P.; Blakeway F. Use of the temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi Forests (SA). Plant Cell Tiss Org Cult. 81: 347–358; 2005 doi:10.1007/s11240-004-6658-x.

    Article  Google Scholar 

  • Mordocco A.; Cox M. C.; Stringer J. K.; Lakshmanan P.; Gilmour R. F.; Allsopp P. G. Patterns of adoption of commercial sugarcane cultivars to increase economic returns to the Australian sugar industry. Sugar Cane Int. 23: 35–38; 2005.

    Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 15: 473–479; 1962 doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  • Paek K. Y.; Hahn E. J.; Son S. H. Application of bioreactors for large-scale micropropogation systems of plants. In Vitro Cell Dev Biol Plant. 37: 149–157; 2001 doi:10.1007/s11627-001-0027-9.

    Article  CAS  Google Scholar 

  • Phillips G. C. In vitro morphogenesis in plants—recent advances. In Vitro Cell Dev Biol Plant. 40: 342–345; 2004 doi:10.1079/IVP2004555.

    Article  CAS  Google Scholar 

  • Preil, W.; Hempfling, T. Application of temporary immersion system in propagation of Phalaenopsis. In: Hvoslef-Eide T. (ed) First Int Symp Liquid Systems for in vitro mass propagation. Aas, Norway, 29 May–June 2002 p47; 2002

  • Rodriguez R.; Cid M.; Pina D.; Gonzalez-Olmedo J. L.; Desjardins Y. Growth and photosynthetic activity during acclimatization of sugarcane plantlets cultivated in temporary immersion bioreactors. In Vitro Cell Dev Biol Plant. 39: 657–662; 2003 doi:10.1079/IVP2003472.

    Article  Google Scholar 

  • Rose R. J.; Nolan K. E. Genetic regulation of somatic embryogenesis with particular reference to Arabidopsis thaliana and Medicago truncatula. In Vitro Cell Dev Biol Plant. 42: 473–481; 2006.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Clem Kuek for his invaluable critique of the original manuscript, Namie Patterson for her support and technical assistance and Ann Rizzo, Rhylee Swain and Jeff Smith for providing plant material for this research. For statistical knowledge and help, we thank Del Greenway and Jo Stringer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela M. Mordocco.

Additional information

Editor: Gregory C. Phillips

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mordocco, A.M., Brumbley, J.A. & Lakshmanan, P. Development of a temporary immersion system (RITA®) for mass production of sugarcane (Saccharum spp. interspecific hybrids). In Vitro Cell.Dev.Biol.-Plant 45, 450–457 (2009). https://doi.org/10.1007/s11627-008-9173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9173-7

Keywords

Navigation