Skip to main content
Log in

Activity spectra of Bacillus Thuringiensis δ-endotoxins against eight insect cell lines

  • Infectious Disease/Cellular Pathology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Eight continuous insect cell lines were tested for susceptibility to the δ-endotoxins of several lepidopteran-active strains and cloned-gene products of Bacillus thuringiensis. The assays were performed on cells suspended in agarose gel, which allowed the toxins activated at pH 10.5 to be applied directly in a high-pH buffer without causing solvent toxicity to the cells. The responses of the cell lines to the various toxins produced activity spectra that were used to identify functionally similar and dissimilar toxin proteins.

IPRI-CF-1 and FPMI-MS-5, derived from neonate larvae of Choristoneura fumiferana and Manduca sexta, respectively, exhibited the greatest sensitivity to the toxins tested, whereas B. thuringiensis subsp. entomocidus had the broadest in vitro host range. Analysis of activity spectra led to the identification of the particular Cry protein that was responsible for the broad toxicity of this subspecies and demonstrated a distinct difference in toxin composition between two strains of subsp. sotto. The identical spectra observed for subsp. kurstaki HD-1 and NRD-12 is consistent with insect bioassay data obtained previously by other workers and supports the conclusion that there is virtually no difference in activity between these two strains.

The in vitro assay system, referred to as the “lawn assay” and used to test B. thuringiensis activated toxins against insect cell lines, is particularly useful in mode-of-action studies and as a rapid, preliminary test for the presence of specific cytolytic proteins, rather than as a method for screening toxins of wild-type strains for insecticidal activity. The response of cells in vitro to B. thuringiensis toxins is often very different from that of the insect from which the cells were derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Dow, J. A. T. Extremely high pH in biological systems: a model for carbonate transport. Am. J. Physiol. 246:R633-R635; 1984.

    PubMed  CAS  Google Scholar 

  • Dubois, N. R. Selection of new more potent strains of Bacillus thuringiensis for use against gypsy moth and spruce budworm. In: Grimble, D. G.; Lewis, F. B., coordinators. Proceedings, Symposium on Microbial Control of Spruce Budworms and Gypsy Moths, April 10–12, 1984, Windsor Locks, CT. Gen. Tech. Rep. NE-100. Broomall, PA: USDA Forest Service, Northeastern Forest Experiment Station; 1985:83–85.

    Google Scholar 

  • Dulmage, H. T. Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis var. alesti. J. Invert. Pathol. 15:232–239; 1970.

    Article  Google Scholar 

  • Dulmage, H. T.; Cooperators. Insecticidal activity of isolates of Bacillus thuringiensis and their potential for pest control. In: Burges, H. D., ed. Microbial control of pests and plant diseases 1970–1980. London: Academic Press; 1981:193–222.

    Google Scholar 

  • Fast, P. G. The crystal toxin of Bacillus thuringiensis. In: Burges, H. D., ed. Microbial control of pests and plant diseases 1970–1980. London: Academic Press; 1981:223–248.

    Google Scholar 

  • Grace, T. D. C. Establishment of four strains of cells from insect tissues grown in vitro. Nature (Lond) 195:788–789; 1962.

    Article  CAS  Google Scholar 

  • Gringorten, J. L.; Witt, D. P.; Milne, R. E., et al. An in vitro system for testing Bacillus thuringiensis toxins: the lawn assay. J. Invertebr. Pathol. 56:237–242; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Gringorten, J. L.; Milne, R. E.; Fast, P. G., et al. Suppression of Bacillus thuringiensis δ-endotoxin activity by low alkaline pH. J. Invertebr. Pathol. 60:47–52; 1992.

    Article  CAS  Google Scholar 

  • Harvey, G. T.; Sohi, S. S. Isozyme characterization of 28 cell lines from five insect species. Can. J. Zool. 63:2270–2276; 1985.

    CAS  Google Scholar 

  • Hink, W. F. Established insect cell lines from the cabbage looper, Trichoplusia ni. Nature (Lond) 226:466–467; 1970.

    Article  CAS  Google Scholar 

  • Heimpel, A. M.; Angus, T. A. The taxonomy of insect pathogens related to Bacillus cereus Frankland and Frankland. Can. J. Microbiol. 4:531–541; 1958.

    Article  PubMed  CAS  Google Scholar 

  • Höfte, H.; Whiteley, H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53:242–255; 1989.

    PubMed  Google Scholar 

  • Huber, H. E.; Lüthy, P. Bacillus thuringiensis delta-endotoxin: composition and activation. In: Davidson, E. W., ed. Pathogenesis of invertebr ate microbial diseases. Totowa, NJ: Allanheld, Osmun & Co.; 1981:209–234.

    Google Scholar 

  • Johnson, D. E. Toxicity of Bacillus thuringiensis entomocidal protein toward cultured insect tissue. J. Invertebr. Pathol. 38:94–101; 1981.

    Article  CAS  Google Scholar 

  • Johnson, D. E.; Davidson, L. I. Specificity of cultured insect tissue cells for bioassay of entomocidal protein from Bacillus thuringiensis. In Vitro 20:66–70; 1984.

    PubMed  CAS  Google Scholar 

  • Masson, L.; Préfontaine, G.; Péloquin, L. et al. Comparative analysis of the individual protoxin components in P1 crystals of Bacillus thuringiensis subsp. kurstaki isolates NRD-12 and HD-1. Biochem. J. 269:507–512; 1989a.

    Google Scholar 

  • Masson, L.; Marcotte, P.; Préfontaine, G., et al. Nucleotide sequence of a gene cloned from Bacillus thuringiensis subspecies entomocidus coding for an insecticidal protein toxic for Bombyx mori. Nucleic Acids Res. 17:446; 1989b.

    Article  PubMed  CAS  Google Scholar 

  • Masson, L.; Bossé, M.; Préfontaine, G., et al. Characterization of parasporal crystal toxins of Bacillus thuringiensis subspecies kurstaki strains HD-1 and NRD-12. In: Hickle, L. A.; Fitch, W. L., ed. Analytical chemistry of Bacillus thuringiensis. ACS Symposium Series 432. Washington, DC: American Chemical Society; 1990:61–69.

    Google Scholar 

  • Masson, L.; Mazza, A.; Gringorten, L., et al. Specificity domain localization of Bacillus thuringiensis insecticidal toxins is highly dependent on the bioassay system. Mol. Microbiol. 14:851–860; 1994.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy, W. J. Cytolytic differences among lepidopteran cell lines exposed to toxins of Bacillus thuringiensis subsp. kurstaki (HD-263) and aizawai (HD-112): effect of aminosugars and N-glycosylation. In Vitro Cell. Dev. Biol. 30A:690–695; 1994.

    Article  CAS  Google Scholar 

  • Préfontaine, G.; Fast, P.; Lau, P. C. K., et al. Use of oligonucleotide probes to study the relatedness of delta-endotoxin genes among Bacillus thuringiensis subspecies and strains. Appl. Environ. Microbiol. 53:2808–2814; 1987.

    PubMed  Google Scholar 

  • Pusztai-Carey, M. A novel method for quantitation and isolation of individual toxins from multi-gene Bacillus thuringiensis strains. In: Feng, T.-Y.; Chak, K.-F.; Smith, R. A., et al., ed. Bacillus thuringiensis biotechnology and environmental benefits. Taipei, Taiwan: Hua Shiang Yuan Publishing Co.; 1995:191–199.

    Google Scholar 

  • Smith, R.; Devidas, P.; Pusztai-Carey, M., et al. A novel tool for quantitative analysis of Bacillus thuringiensis toxin proteins. In: Feng, T.-Y.; Chak, K.-F.; Smith, R. A., et al., ed. Bacillus thuringiensis biotechnology and environmental benefits. Taipei, Taiwan: Hua Shiang Yuan Publishing Co.; 1995:217–222.

    Google Scholar 

  • Sohi, S. S. In vitro cultivation of hemocytes of Malacosoma disstria Hubner (Lepidoptera: Lasiocampidae). Can. J. Zool. 49:1355–1358; 1971.

    Article  PubMed  CAS  Google Scholar 

  • Sohi, S. S. The effect of pH and osmotic pressure on the growth and survival of three lepidopteran cell lines. In: Kurstak, E.; Maramorosch, K.; Dübendorfer, A., ed. Invertebrate systems in vitro. Amsterdam: Elsevier/North-Holland Biomedical Press; 1980:35–43.

    Google Scholar 

  • Sohi, S. S. Development of lepidopteran cell lines. In: Richardson, C. D., ed. Methods in molecular biology. Vol. 39. Baculovirus expression protocols. Totowa, NJ: Humana Press; 1995:397–412.

    Chapter  Google Scholar 

  • Sohi, S. S.; Lalouette, W.; Macdonald, J. A., et al. Establishment of continuous midgut cell lines of spruce budworm (Lepidoptera: Tortricidae). In Vitro Cell. Dev. Biol. 29A:56A; 1993.

  • van Frankenhuyzen, K.; Gringorten, J. L.; Milne, R. E., et al. Specificity of activated CryIA proteins from Bacillus thuringiensis subsp. kurstaki HD-1 for defoliating forest Lepidoptera. Appl. Environ. Microbiol. 57:1650–1655; 1991.

    PubMed  Google Scholar 

  • van Frankenhuyzen, K.; Milne, R.; Brousseau, R., et al. Comparative toxicity of the HD-1 and NRD-12 strains of Bacillus thuringiensis subsp. kurstaki to defoliating forest Lepidoptera. J. Invertebr. Pathol. 59:149–154; 1992.

    Article  PubMed  Google Scholar 

  • van Frankenhuyzen, K.; Gringorten, J. L.; Gauthier, D., et al. Toxicity of activated CryI proteins from Bacillus thuringiensis to six forest Lepidoptera and Bombyx mori. J. Invertebr. Pathol. 62:295–301; 1993.

    Article  Google Scholar 

  • Vaughn, J. L.; Goodwin, R. H.; Tompkins, G. J., et al. The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro 13:213–217; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Witt, D. P.; Carson, H.; Hodgdon, J. C. Cytotoxicity of Bacillus thuringiensis δ-endotoxins to cultured Cf-1 cells does not correlate with in vivo activity toward spruce budworm larvae. In: Samson, R. A.; Vlak, J. M.; Peters, D., ed. Fundamental and applied aspects of invertebrate pathology. Proc. Fourth Int. Colloq. Invertebr. Pathol. August 18–22, 1986, Wageningen, The Netherlands. Wageningen: Foundation of the Fourth International Colloquium of Invertebrate Pathology; 1986; 3–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gringorten, J.L., Sohi, S.S. & Masson, L. Activity spectra of Bacillus Thuringiensis δ-endotoxins against eight insect cell lines. In Vitro Cell.Dev.Biol.-Animal 35, 299–303 (1999). https://doi.org/10.1007/s11626-999-0075-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0075-8

Key words

Navigation