Skip to main content
Log in

Cytolytic differences among lepidopteran cell lines exposed to toxins ofBacillus thuringiensis subst.Kurstaki. (HD-263) andAizawai (HD-112): Effect of aminosugars and N-glycosylation

  • Infectious Disease/Cellular Pathology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Comparison of lytic-dose response behavior of seven lepidopteran cell lines to the activated delta-endotoxin polypeptides ofBacillus thuringiensis subspecieskurstaki (HD-263) andaizawai (HD-112) indicated distinct differences among the lines. The lines derived fromSpodoptera speciesS. exigua (URC-SE-1A) andS. littoralis (UIV-SL-575) were more susceptible to lysis byaizawai towin (Bta) thankurstaki toxin (Btk) as were cells from theLymantria dispar line (IPLB-LD652Y). However, the concentrations of Bta required for lysis of 50% of URC-SE-1A and IPLB-LD652Y cells (LC50) were 0.2 to 0.8 µg/ml compared to 5 to 9 µg/ml for UIV-SL-575 cells. In comparison, Btk LC50 concentrations for the three lines were similar (14 to 19 µg/ml). Cells fromS. frugiperda (IPLB-SF-21AE) andTrichoplusia ni (TN368) were similar in their response to Bta (LC50=2.5 to 3.7 µg/ml) and Btk (LC50=1.0 to 2.8 µg/ml) whereas the lines derived fromHeliothis spp. were the least susceptible to both toxins. The LC50 concentrations for Bta with theH. zea line (IPLB-HA-1075) andH. virescens line (BCIRL-HV-AM1) were >50 µg/ml and for Btk were >50 µg/ml and 42 to 50 µg/ml, respectively, yet for both lines Btk was the more cytolytic.

Cytolysis of TN368 cells could be inhibited to varying extents by preincubation of the toxins with the aminosugars of galactose, mannose, and glucose and theirN-acetyl derivatives. The unsubstituted hexoses were not inhibitory. The order of decreasing inhibitory effectiveness was the same for both toxins regardless of the derivative species and followed the order galactose, mannose, and glucose. Also, inhibition of cytolysis could be achieved to varying extents by assaying cells grown in medium with tunicamycin. Lysis with Btk was inhibited 68 and 37% using treated cells of TN368 and IPLB-LD652Y, respectively; however, no inhibition was observed with URC-SE-1A cells. Further, no inhibition of Bta-mediated lysis was obtained with tunicamycin-grown cells of the three lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, J. N.; Arvidson, H. C. Toxic trypsin digest fragment from theBacillus thuringiensis parasporal protein. Appl. Environ. Microbiol. 53:416–421; 1987.

    PubMed  CAS  Google Scholar 

  2. Beegle, C. C.; Dulmage, H. T.; Needleman. Comparative activities of isolates ofBacillus thuringiensis against the black cutworm,Agrotis epsilon, and the beet armyworm,Spodoptera exigua. Unpublished communication; 1983.

  3. Garczynski, S. F.; Crim, J. W.; Adang, M. T. Identification of putative insect brush border membrane-binding molecules specific toBacillus thuringiensis delta-endotoxin by protein blot analysis. Appl. Environ. Microbiol. 57:2816–2820; 1991.

    PubMed  CAS  Google Scholar 

  4. Gelernter, W. D.; Federici, B. A. Continuous cell line fromSpodoptera exigua andAutographa californica. J. Invertebr. Pathol. 48:199–207; 1986.

    Article  Google Scholar 

  5. Goodwin, R. H.; Tompkins, G. J.; Gettig, R. R., et al. Characterization and culture of virus replicating continuous insect cell lines from the bollworm,Heliothis zea (Boddie). In Vitro 18:843–850; 1982.

    Article  Google Scholar 

  6. Goodwin, R. H.; Tompkins, G. J.; McCawley, P. Gypsy moth cell lines divergent in viral susceptibility I. Culture and identification. In Vitro 14:485–494; 1978.

    Article  PubMed  CAS  Google Scholar 

  7. Hink, W. F. Established insect cell line from the cabbage looper,Trichoplusia ni. Nature 226:466–467; 1970.

    Article  PubMed  CAS  Google Scholar 

  8. Hink, W. F.; Strauss, E. Replication of alfalfa looper nuclear polyhedrosis virus in theTrichoplusia ni. (TN368) cell line. In: Kurstak, E.; Maramorosch, K., eds. Invertebrate tissue culture, applications in medicine, biology, and agriculture. New York: Academic Press; 1976:369–374.

    Google Scholar 

  9. Hoffman, C.; Luthy, P.; Hutter, R., et al. Binding of the delta endotoxin fromBacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur. J. Biochem. 173:85–91; 1988.

    Article  Google Scholar 

  10. Hoffman, C.; Vanderbruggen, H.; Hofte, H., et al. Specificity ofBacillus thuringiensis delta-endotoxins is correlated with presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85:7844–7848; 1988.

    Article  Google Scholar 

  11. Hofte, H.; Whiteley, H. R. Insecticidal crystal proteins ofBacillus thuringiensis. Microbiol. Rev. 53:242–255; 1989.

    PubMed  CAS  Google Scholar 

  12. Jarrett, P. Potency factors in the delta-endotoxin ofBacillus thuringiensis var.aizawai and the significance of plasmids in their control. J. Appl. Bacteriol. 58:437–448; 1985.

    CAS  Google Scholar 

  13. Johnson, D. E. Entomocidal activity of crystal proteins fromBacillus thuringiensis toward cultured insect cells. In: Maramorosch, K., ed. Biotechnology in invertebrate pathology and cell culture. New York: Academic Press; 1987:45–61.

    Google Scholar 

  14. Knowles, B. H.; Ellar, D. J. Colloid-osmotic lysis is a general feature of the mechanism of action ofBacillus thuringiensis delta-endotoxins with different insect specificity. Biochim. Biophys. Acta 924:509–518; 1987.

    CAS  Google Scholar 

  15. Knowles, B. J.; Francis, P. H.; Ellar, D. J. Structurally relatedBacillus thuringiensis delta-endotoxins display major differences in insecticidalin vivo andin vitro. J. Cell Sci. 84:221–236; 1986.

    PubMed  CAS  Google Scholar 

  16. Knowles, B. H.; Knight, P. J.; Ellar, D. J. N-acetylgalatosamine is part of the receptor in insect gut epithelia that recognizes an insecticidal protein fromBacillus thuringiensis. Proc. R. Soc. Lond. 245:31–35; 1991.

    Article  CAS  Google Scholar 

  17. Knowles, B. H.; Thomas, W. E.; Ellar, D. J. Lectin-like ofBacillus thuringiensis var.kurstaki lepidopteran-specific toxin is an initial step in insecticidal action. FEBS Lett. 168:197–202; 1984.

    Article  CAS  PubMed  Google Scholar 

  18. Knudson, D. L.; Lescott, T.; Tinsley, T. W. Establishment of a continuous cell line ofSpodoptera littoralis (Lepidoptera: Noctuidae). In Vitro 16:369–370; 1980.

    Article  Google Scholar 

  19. Kronsted, J. W.; Whitely, H. R. Three classes of homologousBacillus thuringiensis crystal-protein genes. Gene 43:29–40; 1986.

    Article  Google Scholar 

  20. Lereclus, D.; Bourgouin, C.; Lecadet, M. M., et al. Role, structure and molecular organization of the genes coding for the parasporal deltaendotoxins ofBacillus thuringiensis. In: Smith, I.; Slepeck, R. A.; Setlow, P., eds. Regulation of procaryotic development. Washington D.C.: American Society of Microbiology; 1989; Chap. 13.

    Google Scholar 

  21. McIntosh, A. H.; Ignoffo, C. M. Characterization of five cell lines established from species. Appl. Entomol. Zool. 18:262–269; 1983.

    Google Scholar 

  22. Nicholls, C. N.; Ahmad, W.; Ellar, D. J. Evidence for two different types of insecticidal P2 toxins with dual specificity inBacillus thuringiensis supspecies. J. Bacteriol. 171:5141–5147; 1989.

    PubMed  CAS  Google Scholar 

  23. Schwab, G. B.; Culver, P.In vitro analyses ofBacillus thuringiensis delta-endotoxin action. In: Hickle, L. A.; Fitch, W. L., eds. ACS Symp. Ser. 432:37–52; 1990.

    Google Scholar 

  24. Thomas, W. E.; Ellar, D. J.Bacillus thuringiensis var.israelensis crystal delta-endotoxin: effects on insect and mammalian cellsin vitro andin vivo. J. Cell Sci. 60:181–197; 1983.

    PubMed  CAS  Google Scholar 

  25. Van Rie, J.; Jansens, S.; Hofte, H., et al. Specificity ofBacillus thuringiensis delta-endotoxins. Eur. J. Biochem. 186:239–247; 1989.

    Article  PubMed  Google Scholar 

  26. Vaughn, J. L.; Goodwin, R. H.; Tompkins, G. J., et al. The establishment of two cell lines from the insectSpodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro 13:213–217; 1977.

    Article  PubMed  CAS  Google Scholar 

  27. Visser, B. A screening for the presence of four different crystal protein gene types in 25Bacillus thuringiensis strains. FBMS Microbiol. Letters 58:121–124; 1989.

    Article  CAS  Google Scholar 

  28. Visser, B.; Munsterman, E.; Stoker, A., et al. A novelBacillus thuringiensis gene encoding aSpodoptera exigua-specific crystal protein. J. Bacteriol. 172:6783–6788; 1990.

    PubMed  CAS  Google Scholar 

  29. Yamamoto, T.; Lizuka, T. Two types of entomocidal toxins in the parasporal crystal ofBacillus thuringiensis var.kurstaki. Arch. Biochem. Biophys. 227:233–241; 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, W.J. Cytolytic differences among lepidopteran cell lines exposed to toxins ofBacillus thuringiensis subst.Kurstaki. (HD-263) andAizawai (HD-112): Effect of aminosugars and N-glycosylation. In Vitro Cell Dev Biol - Animal 30, 690–695 (1994). https://doi.org/10.1007/BF02631272

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631272

Key words

Navigation