Skip to main content
Log in

Regulation of peroxisome proliferator-activated receptor gamma on milk fat synthesis in dairy cow mammary epithelial cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Peroxisome proliferator-activated receptor gamma (PPARγ) participates in lipogenesis in rats, goats, and humans. However, the exact mechanism of PPARγ regulation on milk fat synthesis in dairy cow mammary epithelial cells (DCMECs) remains largely unexplored. The aim of this study was to investigate the role of PPARγ regarding milk fat synthesis in DCMECs and to ascertain whether milk fat precursor acetic acid and palmitic acid could interact with PPARγ signaling to regulate milk fat synthesis. For this study, we examined the effects of PPARγ overexpression and gene silencing on cell growth, triacylglycerol synthesis, and the messenger RNA (mRNA) and protein expression levels of genes involved in milk fat synthesis in DCMECs. In addition, we investigated the influences of acetic acid and palmitic acid on the mRNA and protein levels of milk lipogenic genes and triacylglycerol synthesis in DCMECs transfected with PPARγ small interfering RNA (siRNA) and PPARγ expression vector. The results showed that when PPARγ was silenced, cell viability, proliferation, and triacylglycerol secretion were obviously reduced. Gene silencing of PPARγ significantly downregulated the expression levels of milk fat synthesis-related genes in DCMECs. PPARγ overexpression improved cell viability, proliferation, and triacylglycerol secretion. The expression levels of milk lipogenic genes were significantly increased when PPARγ was overexpressed. Acetic acid and palmitic acid could markedly improve triacylglycerol synthesis and upregulate the expression levels of PPARγ and other lipogenic genes in DCMECs. These results suggest that PPARγ is a positive regulator of milk fat synthesis in DCMECs and that acetic acid and palmitic acid could partly regulate milk fat synthesis in DCMECs via PPARγ signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Similar content being viewed by others

References

  • Alex S, Lange K, Amolo T, Grinstead JS, Haakonsson AK, Szalowska E, Koppen A, Mudde K, Haenen D, Al-Lahham S, Roelofsen H, Houtman R, van der Burg B, Mandrup S, Bonvin AM, Kalkhoven E, Muller M, Hooiveld GJ, Kersten S (2013) Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor gamma. Mol Cell Biol 33:1303–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allman M, Gaskin L, Rivera CA (2010) CCl4-induced hepatic injury in mice fed a Western diet is associated with blunted healing. J Gastroenterol Hepatol 25:635–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauman DE, Griinari JM (2000) Regulation and nutritional manipulation of milk fat. Low-fat milk syndrome. Adv Exp Med Biol 480:209–216

    Article  CAS  PubMed  Google Scholar 

  • Bauman DE, Griinari JM (2003) Nutritional regulation of milk fat synthesis. Annu Rev Nutr 23:203–227

    Article  CAS  PubMed  Google Scholar 

  • Bensinger SJ, Tontonoz P (2008) Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454:470–477

    Article  CAS  PubMed  Google Scholar 

  • Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53:409–435

    Article  CAS  PubMed  Google Scholar 

  • Bernard L, Leroux C, Chilliard Y (2008) Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland. Adv Exp Med Biol 606:67–108

    Article  CAS  PubMed  Google Scholar 

  • Bionaz M, Loor JJ (2008a) ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J Nutr 138:1019–1024

    CAS  PubMed  Google Scholar 

  • Bionaz M, Loor JJ (2008b) Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 9:366

    Article  PubMed  PubMed Central  Google Scholar 

  • Boutinaud M, Guinard-Flamenta J, Jammes H (2004) The number and activity of mammary epithelial cells, determining factors for milk production. Reprod Nutr Dev 44:499–508

    Article  PubMed  Google Scholar 

  • Cui W, Li Q, Feng L, Ding W (2011) MiR-126-3p regulates progesterone receptors and involves development and lactation of mouse mammary gland. Mol Cell Biochem 355:17–25

    Article  CAS  PubMed  Google Scholar 

  • Desvergne B, Michalik L, Wahli W (2006) Transcriptional regulation of metabolism. Physiol Rev 86:465–514

    Article  CAS  PubMed  Google Scholar 

  • Espenshade PJ, Hughes AL (2007) Regulation of sterol synthesis in eukaryotes. Annu Rev Genet 41:401–427

    Article  CAS  PubMed  Google Scholar 

  • Festuccia WT, Blanchard PG, Turcotte V, Laplante M, Sariahmetoglu M, Brindley DN, Richard D, Deshaies Y (2009) The PPARgamma agonist rosiglitazone enhances rat brown adipose tissue lipogenesis from glucose without altering glucose uptake. Am J Physiol Regul Integr Comp Physiol 296:R1327–R1335

    Article  CAS  PubMed  Google Scholar 

  • Fushimi T, Sato Y (2005) Effect of acetic acid feeding on the circadian changes in glycogen and metabolites of glucose and lipid in liver and skeletal muscle of rats. Br J Nutr 94:714–719

    Article  CAS  PubMed  Google Scholar 

  • Fushimi T, Suruga K, Oshima Y, Fukiharu M, Tsukamoto Y, Goda T (2006) Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. Br J Nutr 95:916–924

    Article  CAS  PubMed  Google Scholar 

  • Gerhold DL, Liu F, Jiang G, Li Z, Xu J, Lu M, Sachs JR, Bagchi A, Fridman A, Holder DJ, Doebber TW, Berger J, Elbrecht A, Moller DE, Zhang BB (2002) Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-gamma agonists. Endocrinology 143:2106–2118

    CAS  PubMed  Google Scholar 

  • Hong YH, Nishimura Y, Hishikawa D, Tsuzuki H, Miyahara H, Gotoh C, Choi KC, Feng DD, Chen C, Lee HG, Katoh K, Roh SG, Sasaki S (2005) Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146:5092–5099

    Article  CAS  PubMed  Google Scholar 

  • Huang JG, Gao XJ, Li QZ, Lu LM, Liu R, Luo CC, Wang JL, Bin Q, Jin X (2012) Proteomic analysis of the nuclear phosphorylated proteins in dairy cow mammary epithelial cells treated with estrogen. In Vitro Cell Dev Biol Anim 48:449–457

    Article  CAS  PubMed  Google Scholar 

  • Jacobs AA, Dijkstra J, Liesman JS, Vandehaar MJ, Lock AL, van Vuuren AM, Hendriks WH, van Baal J (2013) Effects of short- and long-chain fatty acids on the expression of stearoyl-CoA desaturase and other lipogenic genes in bovine mammary epithelial cells. Animal 7:1508–1516

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Fang W, Li B, Shi G, Li X, Yang Y, Yang J, Zhang Z, Ning G (2012) Inhibitory effect of andrographolide in 3T3-L1 adipocytes differentiation through the PPARgamma pathway. Mol Cell Endocrinol 358:81–87

    Article  CAS  PubMed  Google Scholar 

  • Kadegowda AK, Bionaz M, Piperova LS, Erdman RA, Loor JJ (2009) Peroxisome proliferator-activated receptor-gamma activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. J Dairy Sci 92:4276–4289

    Article  CAS  PubMed  Google Scholar 

  • Kadegowda AK, Khan MJ, Piperova LS, Teter BB, Rodriguez-Zas SL, Erdman RA, Loor JJ (2013) Trans-10, cis 12-conjugated linoleic acid-induced milk fat depression is associated with inhibition of PPARgamma signaling and inflammation in murine mammary tissue. J Lipids 2013:890343

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Hengbo S, Jun L, Jun L, Wangsheng Z, Huibin T, Huaiping S (2015) PPARG modulated lipid accumulation in dairy GMEC via regulation of ADRP gene. J Cell Biochem 116:192–201

    Article  CAS  PubMed  Google Scholar 

  • Kast-Woelbern HR, Dana SL, Cesario RM, Sun L, de Grandpre LY, Brooks ME, Osburn DL, Reifel-Miller A, Klausing K, Leibowitz MD (2004) Rosiglitazone induction of Insig-1 in white adipose tissue reveals a novel interplay of peroxisome proliferator-activated receptor gamma and sterol regulatory element-binding protein in the regulation of adipogenesis. J Biol Chem 279:23908–23915

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Park KJ, Song JK, Shim TJ, Islam KN, Bae JW, Kim SM, Lee SY, Hwang KK, Kim DW, Cho MC, Ryu KH (2012) The PPARgamma agonist protects cardiomyocytes from oxidative stress and apoptosis via thioredoxin overexpression. Biosci Biotechnol Biochem 76:2181–2187

    Article  CAS  PubMed  Google Scholar 

  • Kolak M, Yki-Jarvinen H, Kannisto K, Tiikkainen M, Hamsten A, Eriksson P, Fisher RM (2007) Effects of chronic rosiglitazone therapy on gene expression in human adipose tissue in vivo in patients with type 2 diabetes. J Clin Endocrinol Metab 92:720–724

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Ko EH, Kim JE, Kim E, Lee H, Choi H, Yu JH, Kim HJ, Seong JK, Kim KS, Kim JW (2012) Nuclear receptor PPARgamma-regulated monoacylglycerol O-acyltransferase 1 (MGAT1) expression is responsible for the lipid accumulation in diet-induced hepatic steatosis. Proc Natl Acad Sci U S A 109:13656–13661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Xu G, Qin Y, Zhang C, Tang H, Yin Y, Xiang X, Li Y, Zhao J, Mulholland M, Zhang W (2014) Ghrelin promotes hepatic lipogenesis by activation of mTOR-PPARgamma signaling pathway. Proc Natl Acad Sci U S A 111:13163–13168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Bookout AL, Lee S, Sun K, Jia L, Lee C, Udit S, Deng Y, Scherer PE, Mangelsdorf DJ, Gautron L, Elmquist JK (2014) PPARgamma in vagal neurons regulates high-fat diet induced thermogenesis. Cell Metab 19:722–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu LM, Li QZ, Huang JG, Gao XJ (2012) Proteomic and functional analyses reveal MAPK1 regulates milk protein synthesis. Molecules 18:263–275

    Article  PubMed  Google Scholar 

  • Luo J, Wu S, Liu J, Li Y, Yang H, Kim T, Zhelyabovska O, Ding G, Zhou Y, Yang Y, Yang Q (2010) Conditional PPARgamma knockout from cardiomyocytes of adult mice impairs myocardial fatty acid utilization and cardiac function. Am J Transl Res 3:61–72

    PubMed  PubMed Central  Google Scholar 

  • Ma L, Corl BA (2012) Transcriptional regulation of lipid synthesis in bovine mammary epithelial cells by sterol regulatory element binding protein-1. J Dairy Sci 95:3743–3755

    Article  CAS  PubMed  Google Scholar 

  • Maxin G, Glasser F, Hurtaud C, Peyraud JL, Rulquin H (2011) Combined effects of trans-10, cis-12 conjugated linoleic acid, propionate, and acetate on milk fat yield and composition in dairy cows. J Dairy Sci 94:2051–2059

    Article  CAS  PubMed  Google Scholar 

  • Meshkani R, Sadeghi A, Taheripak G, Zarghooni M, Gerayesh-Nejad S, Bakhtiyari S (2014) Rosiglitazone, a PPARgamma agonist, ameliorates palmitate-induced insulin resistance and apoptosis in skeletal muscle cells. Cell Biochem Funct 32:683–691

    Article  CAS  PubMed  Google Scholar 

  • Moran-Salvador E, Lopez-Parra M, Garcia-Alonso V, Titos E, Martinez-Clemente M, Gonzalez-Periz A, Lopez-Vicario C, Barak Y, Arroyo V, Claria J (2011) Role for PPARgamma in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB J 25:2538–2550

    Article  CAS  PubMed  Google Scholar 

  • Nie F, Liang Y, Xun H, Sun J, He F, Ma X (2015) Inhibitory effects of tannic acid in the early stage of 3T3-L1 preadipocytes differentiation by down-regulating PPARgamma expression. Food Funct. doi:10.1039/c4fo00871e

    Google Scholar 

  • Ntambi JM, Miyazaki M (2003) Recent insights into stearoyl-CoA desaturase-1. Curr Opin Lipidol 14:255–261

    Article  CAS  PubMed  Google Scholar 

  • Pan Z, Wang J, Tang H, Li L, Lv J, Xia L, Han C, Xu F, He H, Xu H, Kang B (2011) Effects of palmitic acid on lipid metabolism homeostasis and apoptosis in goose primary hepatocytes. Mol Cell Biochem 350:39–46

    Article  CAS  PubMed  Google Scholar 

  • Pang T, Sun LX, Wang T, Jiang ZZ, Liao H, Zhang LY (2014) Telmisartan protects central neurons against nutrient deprivation-induced apoptosis in vitro through activation of PPARgamma and the Akt/GSK-3beta pathway. Acta Pharmacol Sin 35:727–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HJ, Yun J, Jang SH, Kang SN, Jeon BS, Ko YG, Kim HD, Won CK, Kim GS, Cho JH (2014) Coprinus comatus cap inhibits adipocyte differentiation via regulation of PPARgamma and Akt signaling pathway. PLoS One 9, e105809

    Article  PubMed  PubMed Central  Google Scholar 

  • Purdie NG, Trout DR, Poppi DP, Cant JP (2008) Milk synthetic response of the bovine mammary gland to an increase in the local concentration of amino acids and acetate. J Dairy Sci 91:218–228

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Yan S, Sheng R, Zhao Y, Guo X (2014) Effects of saturated long-chain fatty acid on mRNA expression of genes associated with milk fat and protein biosynthesis in bovine mammary epithelial cells. Asian-Australas J Anim Sci 27:414–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rull A, Geeraert B, Aragones G, Beltran-Debon R, Rodriguez-Gallego E, Garcia-Heredia A, Pedro-Botet J, Joven J, Holvoet P, Camps J (2014) Rosiglitazone and fenofibrate exacerbate liver steatosis in a mouse model of obesity and hyperlipidemia. A transcriptomic and metabolomic study. J Proteome Res 13:1731–1743

    Article  CAS  PubMed  Google Scholar 

  • Rutledge RG, Cote C (2003) Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res 31, e93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster M, Zouboulis CC, Ochsendorf F, Muller J, Thaci D, Bernd A, Kaufmann R, Kippenberger S (2011) Peroxisome proliferator-activated receptor activators protect sebocytes from apoptosis: a new treatment modality for acne? Br J Dermatol 164:182–186

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Luo J, Zhu J, Li J, Sun Y, Lin X, Zhang L, Yao D, Shi H (2013) PPAR gamma regulates genes involved in triacylglycerol synthesis and secretion in mammary gland epithelial cells of dairy goats. PPAR Res 2013:310948

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas AW, Davies NA, Moir H, Watkeys L, Ruffino JS, Isa SA, Butcher LR, Hughes MG, Morris K, Webb R (2012) Exercise-associated generation of PPARgamma ligands activates PPARgamma signaling events and upregulates genes related to lipid metabolism. J Appl Physiol (1985) 112:806–815

    Article  CAS  Google Scholar 

  • Tong H-l, Xue-Jun Q-z, Zhong-Ying (2011) Metabolic regulation of mammary gland epithelial cells of dairy cow by Galactopoietic compound isolated from Vaccariae segetalis. Agric Sci China 10:1106–1116

    Article  CAS  Google Scholar 

  • Tong HL, Li QZ, Gao XJ, Yin DY (2012) Establishment and characterization of a lactating dairy goat mammary gland epithelial cell line. In Vitro Cell Dev Biol Anim 48:149–155

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Bian Y, Wang Z, Li D, Wang C, Li Q, Gao X (2014) MicroRNA-152 regulates DNA methyltransferase 1 and is involved in the development and lactation of mammary glands in dairy cows. PLoS One 9, e101358

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang D, Tian M, Qi Y, Chen G, Xu L, Zou X, Wang K, Dong H, Lu F (2015) Jinlida granule inhibits palmitic acid induced-intracellular lipid accumulation and enhances autophagy in NIT-1 pancreatic beta cells through AMPK activation. J Ethnopharmacol 161:99–107

    Article  CAS  PubMed  Google Scholar 

  • Way JM, Harrington WW, Brown KK, Gottschalk WK, Sundseth SS, Mansfield TA, Ramachandran RK, Willson TM, Kliewer SA (2001) Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferator-activated receptor gamma activation has coordinate effects on gene expression in multiple insulin-sensitive tissues. Endocrinology 142:1269–1277

    CAS  PubMed  Google Scholar 

  • Xie P, Zhang AT, Wang C, Azzam MM, Zou XT (2012) Molecular cloning, characterization, and expression analysis of fatty acid translocase (FAT/CD36) in the pigeon (Columba livia domestica). Poult Sci 91:1670–1679

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Cavallero S, Patterson M, Shen H, Xu J, Kumar SR, Sucov HM (2015) Adipogenesis and epicardial adipose tissue: a novel fate of the epicardium induced by mesenchymal transformation and PPARgamma activation. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1417232112

    Google Scholar 

  • Yang X, Yin L, Li T, Chen Z (2014) Green tea extracts reduce adipogenesis by decreasing expression of transcription factors C/EBPalpha and PPARgamma. Int J Clin Exp Med 7:4906–4914

    PubMed  PubMed Central  Google Scholar 

  • Yonezawa T, Yonekura S, Sanosaka M, Hagino A, Katoh K, Obara Y (2004) Octanoate stimulates cytosolic triacylglycerol accumulation and CD36 mRNA expression but inhibits acetyl coenzyme A carboxylase activity in primary cultured bovine mammary epithelial cells. J Dairy Res 71:398–404

    Article  CAS  PubMed  Google Scholar 

  • Yonezawa T, Haga S, Kobayashi Y, Katoh K, Obara Y (2009) Short-chain fatty acid signaling pathways in bovine mammary epithelial cells. Regul Pept 153:30–36

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yu L, Cai W, Fan S, Feng L, Ji G, Huang C (2014) Protopanaxatriol, a novel PPARgamma antagonist from Panax ginseng, alleviates steatosis in mice. Sci Rep 4:7375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Jiang SJ, Lu FE, Xu LJ, Zou X, Wang KF, Dong H (2014) Effects of berberine and cinnamic acid on palmitic acid-induced intracellular triglyceride accumulation in NIT-1 pancreatic beta cells. Chin J Integr Med. doi:10.1007/s11655-014-1986-0

    Google Scholar 

Download references

Acknowledgments

The authors thank the members of Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, for the help they supplied in the research. This study was financially supported by The China Postdoctoral Science Foundation (2016M591568), Heilongjiang Postdoctoral Financial Assistance (LBH-Z14202) and Major State Basic Research Development Program of China (973 Program, No. 2011CB100804). The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhang Li.

Additional information

Editor: Tetsuji Okamoto

All other authors have read the manuscript and have agreed to submit it in its current form for consideration for publication in the journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Lin, Y., Liu, L. et al. Regulation of peroxisome proliferator-activated receptor gamma on milk fat synthesis in dairy cow mammary epithelial cells. In Vitro Cell.Dev.Biol.-Animal 52, 1044–1059 (2016). https://doi.org/10.1007/s11626-016-0059-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-016-0059-4

Keywords

Navigation