Skip to main content

Advertisement

Log in

Establishment and characterization of a lactating dairy goat mammary gland epithelial cell line

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

To study milk synthesis in dairy goat mammary gland, we had established an in vitro lactating dairy goat mammary epithelial cell (DGMEC) line. Mammary tissues of Guan Zhong dairy goats at 35 d of lactation were dispersed and cultured in a medium containing epithelial growth factor, insulin-like growth factor-1, insulin transferrin serum, and fetal bovine serum. Epithelial cells were enriched by digesting with 0.25% trypsin repeatedly to remove fibroblast cells and were identified as epithelial origin by staining with antibody against cytokeratine 18. The DGMECs displayed monolayer, cobble-stone, epithelial-like morphology, and formed alveoli-like structures and island monolayer aggregates which were the typical characteristics of mammary epithelial cells. A one-half logarithmically growth curve and cytoplasmic lipid droplets in these cells were observed. In this paper, we also studied the lactating function of DGMECs. Results showed that DGMECs could secrete lactose and β-casein. Lactating function of the cells had no obvious change after 48 h treated by insulin, while prolactin could obviously raise the secretion of milk proteins and lactose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Bertucci P. Y.; Quaglino A.; Pozzi A. G.; Kordon E. C.; Pecci A. Glucocorticoid-induced impairment of mammary gland involution is associated with STAT5 and STAT3 signaling modulation. Endocrinology. 151: 5730–5740; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Buser A. C.; Gass-Handel E. K.; Wyszomierski S. L.; Doppler W.; Leonhardt S. A.; Schaack J.; Rosen J. M.; Watkin H.; Anderson S. M.; Edwards D. P. Progesterone receptor repression of prolactin/signal transducer and activator of transcription 5-mediated transcription of the beta-casein gene in mammary epithelial cells. Mol Endocrinol. 21: 106–125; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Danielson K. G.; Oborn C. J.; Durban E. M.; Butel J. S.; Medina D. Epithelial mouse mammary cell line exhibiting normal morphogenesis in vivo and functional differentiation in vitro. P Natl Acad Sci U S A 81: 3756–3760; 1984.

    Article  CAS  Google Scholar 

  • Duchler M.; Schmoll F.; Pfneisl F.; Brem G.; Schellander K. OMEC II: a new ovine mammary epithelial cell line. Biol Cell 90: 199–205; 1998.

    Article  PubMed  CAS  Google Scholar 

  • German T.; Barash I. Characterization of an epithelial cell line from bovine mammary gland. In Vitro Cell Dev An. 38: 282–292; 2002.

    Article  CAS  Google Scholar 

  • Gibson C. A.; Vega J. R.; Baumrucker C. R.; Oakley C. S.; Welsch C. W. Establishment and characterization of bovine mammary epithelial cell lines. In Vitro Cell Dev An 27: 585–594; 1991.

    Article  Google Scholar 

  • Gordon K. E.; Binas B.; Chapman R. S.; Kurian K. M.; Clarkson R. W.; Clark A. J.; Lane E. B.; Watson C. J. A novel cell culture model for studying differentiation and apoptosis in the mouse mammary gland. Breast Cancer Res. 2: 222–235; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Huynh H. T.; Pollak M. HH2a, an immortalized bovine mammary epithelial cell line expresses the gene encoding mammary derived growth inhibitor (MDGI). In Vitro Cell Dev An. 31: 25–29; 1995.

    Article  CAS  Google Scholar 

  • Ilan N.; Barash I.; Gootwine E.; Shani M. Establishment and initial characterization of the ovine mammary epithelial cell line NISH. In Vitro Cell Dev An 34: 326–332; 1998.

    Article  CAS  Google Scholar 

  • Janne J.; Alhonen L.; Hyttinen J. M.; Peura T.; Tolvanen M.; Korhonen V. P. Transgenic bioreactors. Biotechnol Annu Rev 4: 55–74; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Kittrell F. S.; Oborn C. J.; Medina D. Development of mammary preneoplasias in vivo from mouse mammary epithelial cell lines in vitro. Cancer Res 52: 1924–1932; 1992.

    PubMed  CAS  Google Scholar 

  • Link N.; Aubel C.; Kelm J. M.; Marty R. R.; Greber D.; Djonov V.; Bourhis J.; Weber W.; Fussenegger M. Therapeutic protein transduction of mammalian cells and mice by nucleic acid-free lentiviral nanoparticles. Nucleic Acids Res 34: e16; 2006.

    Article  PubMed  Google Scholar 

  • Madsen M.; Lykkesfeldt A. E.; Laursen I.; Nielsen K. V.; Briand P. Altered gene expression of c-myc, epidermal growth factor receptor, transforming growth factor-alpha, and c-erb-B2 in an immortalized human breast epithelial cell line, HMT-3522, is associated with decreased growth factor requirements. Cancer Res 52: 1210–1217; 1992.

    PubMed  CAS  Google Scholar 

  • Niemann H.; Kues W. A. Application of transgenesis in livestock for agriculture and biomedicine. Anim Reprod Sci 79: 291–317; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Pantschenko A. G.; Woodcock-Mitchell J.; Bushmich S. L.; Yang T. J. Establishment and characterization of a caprine mammary epithelial cell line (CMEC). In Vitro Cell Dev An 36: 26–37; 2000.

    Article  CAS  Google Scholar 

  • Qian L.; Lopez V.; Seo Y. A.; Kelleher S. L. Prolactin regulates ZNT2 expression through the JAK2/STAT5 signaling pathway in mammary cells. Am J Physiol Cell Ph 297: 369–377; 2009.

    Article  Google Scholar 

  • Rose M. T.; Aso H.; Yonekura S.; Komatsu T.; Hagino A.; Ozutsumi K.; Obara Y. In vitro differentiation of a cloned bovine mammary epithelial cell. J Dairy Res 69: 345–355; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Rosen J. M.; Wyszomiersk S. L.; Hadsell D. Regulation of milk protein gene expression. Annu Rev Nutr 19: 407–436; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Sun Y. L.; Lin C. S.; Chou Y. C. Establishment and characterization of a spontaneously immortalized porcine mammary epithelial cell line. Cell Biol Int 30: 970–976; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler M. B.; Walters E. M. Transgenic technology and applications in swine. Theriogenology 56: 1345–1369; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Zavizion B.; Gorewit R. C.; Politis I. Subcloning the MAC-T bovine mammary epithelial cell line: morphology, growth properties, and cytogenetic analysis of clonal cells. J Dairy Sci 78: 515–527; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Zhao K.; Liu H. Y.; Zhou M. M.; Liu J. X. Establishment and characterization of a lactating bovine mammary epithelial cell model for the study of milk synthesis. Cell Biol Int 34: 717–721; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y. M.; He X. Y. Characteristics and EGFP expression of porcine mammary gland epithelial cells. Res Vet Sci 89: 383–390; 2010.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was founded by National Key Basic Research Program of China (project no. 2011CB100804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Jun Gao.

Additional information

Editor: T. Okamoto

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(XLS 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, HL., Li, QZ., Gao, XJ. et al. Establishment and characterization of a lactating dairy goat mammary gland epithelial cell line. In Vitro Cell.Dev.Biol.-Animal 48, 149–155 (2012). https://doi.org/10.1007/s11626-012-9481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9481-4

Keywords

Navigation