Skip to main content

Advertisement

Log in

Effects of FGF2 and FGF9 on osteogenic differentiation of bone marrow-derived progenitors

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Bone repair is a major concern in reconstructive surgery. Transplants containing osteogenically committed mesenchymal stem cells (MSCs) provide an alternative source to the currently used autologous bone transplants which have limited supply and require additional surgery to the patient. A major drawback, however is the lack of a critical mass of cells needed for successful transplantation. The purpose of the present study was to test the effects of FGF2 and FGF9 on expansion and differentiation of MSCs in order to establish an optimal culture protocol resulting in sufficient committed osteogenic cells required for successful in vivo transplantation. Bone marrow-derived MSCs cultured in αMEM medium supplemented with osteogenic supplements for up to three passages (control medium), were additionally treated with FGF2 and FGF9 in various combinations. Cultures were evaluated for viability, calcium deposition and in vivo osteogenic capacity by testing subcutaneous transplants in nude mice. FGF2 had a positive effect on the proliferative capacity of cultured MSCs compared to FGF9 and control medium treated cultures. Cultures treated with FGF2 followed by FGF9 showed an increased amount of extracted Alizarin red indicating greater osteogenic differentiation. Moreover, the osteogenic capacity of cultured cells transplanted in immunodeficient mice revealed that cells that were subjected to treatment with FGF2 in the first two passages and subsequently to FGF9 in the last passage only, were more successful in forming new bone. It is concluded that the protocol using FGF2 prior to FGF9 is beneficial to cell expansion and commitment, resulting in higher in vivo bone formation for successful bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Agata H.; Asahina I. et al. Effective bone engineering with periosteum-derived cells. J Dent Res 86: 79–83; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Bloemers F. W.; Blokhuis T. J. et al. Autologous bone versus calcium-phosphate ceramics in treatment of experimental bone defects. J Biomed Mater Res B Appl Biomater 66: 526–531; 2003.

    Article  PubMed  Google Scholar 

  • Caterson E. J.; Nesti L. J. et al. Human marrow-derived mesenchymal progenitor cells: isolation, culture expansion, and analysis of differentiation. Mol Biotechnol 20: 245–256; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Colter D. C.; Class R. et al. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA 97: 3213–3218; 2000.

    Article  PubMed  CAS  Google Scholar 

  • De Moerlooze L.; Dickson C. Skeletal disorders associated with fibroblast growth factor receptor mutations. Curr Opin Genet Dev 7: 378–385; 1997.

    Article  PubMed  Google Scholar 

  • Ever L.; Zhao R. J. et al. Fibroblast growth factor receptor 2 plays an essential role in telencephalic progenitors. Dev Neurosci 30: 306–318; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Fakhry A.; Ratisoontorn C. et al. Effects of FGF-2/-9 in calvarial bone cell cultures: differentiation stage-dependent mitogenic effect, inverse regulation of BMP-2 and noggin, and enhancement of osteogenic potential. Bone 36: 254–266; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Fujita M.; Kinoshita Y. et al. Proliferation and differentiation of rat bone marrow stromal cells on poly(glycolic acid)-collagen sponge. Tissue Eng 11: 1346–1355; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Govindarajan V.; Overbeek P. A. FGF9 can induce endochondral ossification in cranial mesenchyme. BMC Dev Biol 6: 7; 2006.

    Article  PubMed  Google Scholar 

  • Gregory C. A.; Gunn W. G. et al. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 329: 77–84; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Haynesworth S. E.; Goldberg V. M. et al. Diminution of the number of mesenchymal stem cells as a cause for skeletal aging. Musculoskeletal Soft-tissue Aging: Impact on Mobility. In: Buckwalter J. A., Goldberg V. M.; Y. W. SL-Y. (eds) Rosemont, American Academy of Orthopaedic Surgeons. pp. 79–87, 1994.

  • Haynesworth S. E.; Goshima J. et al. Characterization of cells with osteogenic potential from human marrow. Bone 13: 81–88; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Hecht D.; Zimmerman N. et al. Identification of fibroblast growth factor 9 (FGF9) as a high affinity, heparin dependent ligand for FGF receptors 3 and 2 but not for FGF receptors 1 and 4. Growth Factors 12: 223–233; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Hori Y.; Inoue S. et al. Effect of culture substrates and fibroblast growth factor addition on the proliferation and differentiation of rat bone marrow stromal cells. Tissue Eng 10: 995–1005; 2004.

    PubMed  CAS  Google Scholar 

  • Hung S. C.; Chen N. J. et al. Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells 20: 249–258; 2002.

    Article  PubMed  Google Scholar 

  • Hurley M. M.; Abreu C. et al. Expression and regulation of basic fibroblast growth factor mRNA levels in mouse osteoblastic MC3T3-E1 cells. J Biol Chem 269: 9392–9396; 1994.

    PubMed  CAS  Google Scholar 

  • Hurley M. M.; Tetradis S. et al. Parathyroid hormone regulates the expression of fibroblast growth factor-2 mRNA and fibroblast growth factor receptor mRNA in osteoblastic cells. J Bone Miner Res 14: 776–783; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Ignelzi Jr. M. A.; Wang W. et al. Fibroblast growth factors lead to increased Msx2 expression and fusion in calvarial sutures. J Bone Miner Res 18: 751–759; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Jackson R. A.; Nurcombe V. et al. Coordinated fibroblast growth factor and heparan sulfate regulation of osteogenesis. Gene 379: 79–91; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Jones E.; McGonagle D. Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford) 47: 126–131; 2008.

    Article  CAS  Google Scholar 

  • Kotobuki N.; Hirose M. et al. Cultured autologous human cells for hard tissue regeneration: preparation and characterization of mesenchymal stem cells from bone marrow. Artif Organs 28: 33–39; 2004.

    Article  PubMed  Google Scholar 

  • Li Z. G.; Mathew P. et al. Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms. J Clin Invest 118: 2697–2710; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Luria E. A.; Owen M. E. et al. Bone formation in organ cultures of bone marrow. Cell Tissue Res 248: 449–454; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Matsubara T.; Suardita K. et al. Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells. J Bone Miner Res 20: 399–409; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Maurice S.; Srouji S. et al. Isolation of progenitor cells from cord blood using adhesion matrices. Cytotechnology 54: 121–133; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Montero A.; Okada Y. et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest 105: 1085–1093; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Muraglia A.; Martin I. et al. A nude mouse model for human bone formation in unloaded conditions. Bone 22: 131S–134S; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Ornitz D. M.; Marie P. J. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16: 1446–1465; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Quarto N.; Longaker M. T. Differential expression of specific FGF ligands and receptor isoforms during osteogenic differentiation of mouse adipose-derived stem cells (mASCs) recapitulates the in vivo osteogenic pattern. Gene 424: 130–140; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Quarto N.; Wan D. C. et al. Molecular mechanisms of FGF-2 inhibitory activity in the osteogenic context of mouse adipose-derived stem cells (mASCs). Bone 42: 1040–1052; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Reyes M.; Lund T. et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98: 2615–2625; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Sabbieti M. G.; Marchetti L. et al. Prostaglandins regulate the expression of fibroblast growth factor-2 in bone. Endocrinology 140: 434–444; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Sekiya I.; Larson B. L. et al. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20: 530–541; 2002.

    Article  PubMed  Google Scholar 

  • Slater B. J.; Kwan M. D. et al. Mesenchymal cells for skeletal tissue engineering. Expert Opin Biol Ther 8: 885–893; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Smith J. R.; Pochampally R. et al. Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem Cells 22: 823–831; 2004.

    Article  PubMed  Google Scholar 

  • Solchaga L. A.; Penick K. et al. FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol 203: 398–409; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Sotiropoulou P. A.; Perez S. A. et al. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24: 462–471; 2006.

    Article  PubMed  Google Scholar 

  • Sullivan R.; Klagsbrun M. Purification of cartilage-derived growth factor by heparin affinity chromatography. J Biol Chem 260: 2399–2403; 1985.

    PubMed  CAS  Google Scholar 

  • Toai T. C.; Thao H. D. et al. In vitro culture and differentiation of osteoblasts from human umbilical cord blood. Cell Tissue Bank 11: 269–280; 2009.

    Article  PubMed  Google Scholar 

  • Tsutsumi S.; Shimazu A. et al. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun 288: 413–419; 2001.

    Article  PubMed  CAS  Google Scholar 

  • van den Bos C.; Mosca J. D. et al. Human mesenchymal stem cells respond to fibroblast growth factors. Hum Cell 10: 45–50; 1997.

    PubMed  Google Scholar 

  • Young C. S.; Abukawa H. et al. Tissue-engineered hybrid tooth and bone. Tissue Eng 11: 1599–1610; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Yu K.; Xu J. et al. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development 130: 3063–3074; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Yu L. Y.; Pei Y. et al. Effect of fibroblast growth factor 9 on Runx2 gene promoter activity in MC3T3-E1 and C2C12 cells. Chin Med J (Engl) 120: 491–495; 2007.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge MAGNET, Israel Ministry of commerce & Industry, No. 2007992 for supporting this research. The excellent technical assistance of Janette Zavin, Pessia Shenzer is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Livne.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kizhner, T., Ben-David, D., Rom, E. et al. Effects of FGF2 and FGF9 on osteogenic differentiation of bone marrow-derived progenitors. In Vitro Cell.Dev.Biol.-Animal 47, 294–301 (2011). https://doi.org/10.1007/s11626-011-9390-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-011-9390-y

Keywords

Navigation