Skip to main content

Advertisement

Log in

Donor Age and Cell Passage Affect Osteogenic Ability of Rat Bone Marrow Mesenchymal Stem Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Tissue engineering allows the restoration of pathologically damaged tissues such as cartilage and bone using bio-scaffolds containing functionally active cells. Bone-marrow-derived mesenchymal stem cells (BMSCs) are a promising source of cells for tissue engineering due to their multilineage differentiation potential. However, proliferative and osteogenic abilities of BMSCs, and quantity of stem cells decreases in the bone marrow in aged population. We cultured BMSCs isolated from rats of various ages and evaluated their morphology, activity, and differentiation potential. Cultured BMSCs formed monolayer of fibroblast-like cells and maintained their characteristic morphology for 7–10 generations. Flow cytometry showed that aging of the cultured cell population correlated with the decrease in the expression of mesenchymal and hematopoietic surface markers, such as CD44, CD45, CD90, and CD29. We detected strong correlation between the age of BMSC donor and ALP activity in BMSC culture induced with low doses of dexamethasone and vitamin C. Cells from 2- and 6-week-old donor SD rats exhibited markedly increased ALP activity that coincided with increased bone content and strong positive staining of mineralized nodules. In contrast, BMSCs isolated from 10-month-old donors showed the lowest ALP activity, and decreased bone content and mineralized nodules formation. Our results demonstrate that the increase in donor age negatively affects proliferation and differentiation capacity of BMSCs in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tevlin, R., et al. (2014). Biomaterials for craniofacial bone engineering. Journal of Dental Research, 93, 1187.

    Article  CAS  PubMed  Google Scholar 

  2. Moore, D. D., & Haydon, R. C. (2014). Ewing’s sarcoma of bone. Cancer Treatment and Research, 162, 93–115.

    PubMed  Google Scholar 

  3. Albrand, G., et al. (2003). Independent predictors of all osteoporosis-related fractures in healthy postmenopausal women: The OFELY study. Bone, 32(1), 78–85.

    Article  CAS  PubMed  Google Scholar 

  4. Lindahl, K., et al. (2014). Treatment of osteogenesis imperfecta in adults. European Journal of Endocrinology, 171(2), R79–R90.

    Article  CAS  PubMed  Google Scholar 

  5. Ramina, R., et al. (2004). Jugular foramen tumors: Diagnosis and treatment. Neurosurgical Focus, 17(2), E5.

    Article  PubMed  Google Scholar 

  6. Hidalgo-Bastida, L. A., & Cartmell, S. H. (2010). Mesenchymal stem cells, osteoblasts and extracellular matrix proteins: Enhancing cell adhesion and differentiation for bone tissue engineering. Tissue Engineering Part B: Reviews, 16(4), 405–412.

    Article  CAS  Google Scholar 

  7. Gordeladze, J. O., et al. (2009). From stem cells to bone: Phenotype acquisition, stabilization, and tissue engineering in animal models. ILAR Journal, 51(1), 42–61.

    Article  PubMed  Google Scholar 

  8. Shi, R., et al. (2009). Recent advances in synthetic bioelastomers. International Journal of Molecular Sciences, 10(10), 4223–4256.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Friedenstein, A. J., et al. (1974). Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Experimental Hematology, 2(2), 83–92.

    CAS  PubMed  Google Scholar 

  10. Maniatopoulos, C., Sodek, J., & Melcher, A. H. (1988). Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell and Tissue Research, 254(2), 317–330.

    Article  CAS  PubMed  Google Scholar 

  11. Dirckx, N., Van Hul, M., & Maes, C. (2013). Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration. Birth Defects Research C: Embryo Today, 99(3), 170–191.

    CAS  PubMed  Google Scholar 

  12. Fakhry, M., et al. (2013). Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World Journal of Stem Cells, 5(4), 136–148.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Bruder, S. P., Fink, D. J., & Caplan, A. I. (1994). Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. Journal of Cellular Biochemistry, 56(3), 283–294.

    Article  CAS  PubMed  Google Scholar 

  14. Pittenger, M. F., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    Article  CAS  PubMed  Google Scholar 

  15. Redzic, A., et al. (2010). In vivo osteoinductive effect and in vitro isolation and cultivation bone marrow mesenchymal stem cells. Collegium Antropologicum, 34(4), 1405–1409.

    CAS  PubMed  Google Scholar 

  16. Tropel, P., et al. (2004). Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Experimental Cell Research, 295(2), 395–406.

    Article  CAS  PubMed  Google Scholar 

  17. Kim, H. J., et al. (2006). Glucocorticoids suppress bone formation via the osteoclast. Journal of Clinical Investigation, 116(8), 2152–2160.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Jager, M., et al. (2008). Dexamethasone modulates BMP-2 effects on mesenchymal stem cells in vitro. Journal of Orthopaedic Research, 26(11), 1440–1448.

    Article  PubMed  Google Scholar 

  19. Yang, M., Zhang, H., & Gangolli, R. (2014). Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering. Current Stem Cell Research & Therapy, 9(3), 150–161.

    Article  CAS  Google Scholar 

  20. Amini, A. R., Laurencin, C. T., & Nukavarapu, S. P. (2012). Bone tissue engineering: Recent advances and challenges. Critical Reviews in Biomedical Engineering, 40(5), 363–408.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Liao, H. T., & Chen, C. T. (2014). Osteogenic potential: Comparison between bone marrow and adipose-derived mesenchymal stem cells. World Jouranl of Stem Cells, 6(3), 288–295.

    Article  Google Scholar 

  22. Friedman, M. S., Long, M. W., & Hankenson, K. D. (2006). Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. Journal of Cellular Biochemistry, 98(3), 538–554.

    Article  CAS  PubMed  Google Scholar 

  23. Danisovic, L., et al. (2012). The tissue engineering of articular cartilage: Cells, scaffolds and stimulating factors. Experimental Biology and Medicine (Maywood), 237(1), 10–17.

    Article  CAS  Google Scholar 

  24. Sottile, V., et al. (2002). Stem cell characteristics of human trabecular bone-derived cells. Bone, 30(5), 699–704.

    Article  CAS  PubMed  Google Scholar 

  25. Asumda, F. Z., & Chase, P. B. (2011). Age-related changes in rat bone-marrow mesenchymal stem cell plasticity. BMC Cell Biology, 12, 44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Eslaminejad, M. B., & Poor, E. M. (2014). Mesenchymal stem cells as a potent cell source for articular cartilage regeneration. World Journal of Stem Cells, 6(3), 344–354.

    Article  Google Scholar 

  27. Young, R. G., et al. (1998). Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. Journal of Orthopaedic Research, 16(4), 406–413.

    Article  CAS  PubMed  Google Scholar 

  28. Schuler, F., & Sorokin, L. M. (1995). Expression of laminin isoforms in mouse myogenic cells in vitro and in vivo. Journal of Cell Science, 108(Pt 12), 3795–3805.

    CAS  PubMed  Google Scholar 

  29. Lazarus, H. M., et al. (1995). Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): Implications for therapeutic use. Bone Marrow Transplantation, 16(4), 557–564.

    CAS  PubMed  Google Scholar 

  30. Sharma, U., Pal, D., & Prasad, R. (2014). Alkaline phosphatase: An overview. Indian Journal of Clinical Biochemistry, 29(3), 269–278.

    Article  CAS  PubMed  Google Scholar 

  31. Cancela, M. L., Laize, V., & Conceicao, N. (2014). Matrix Gla protein and osteocalcin: From gene duplication to neofunctionalization. Archives of Biochemistry and Biophysics, 561C, 56–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqin Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wei, G., Gu, Q. et al. Donor Age and Cell Passage Affect Osteogenic Ability of Rat Bone Marrow Mesenchymal Stem Cells. Cell Biochem Biophys 72, 543–549 (2015). https://doi.org/10.1007/s12013-014-0500-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0500-9

Keywords

Navigation