Skip to main content

Advertisement

Log in

In vitro culture and differentiation of osteoblasts from human umbilical cord blood

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

It is well accepted that human umbilical cord blood (UCB) is a source of mesenchymal stem cells (MSCs) which are able to differentiate into different cell phenotypes such as osteoblasts, chondrocytes, adipocytes, myocytes, cardiomyocytes and neurons. The aim of this study was to isolate MSCs from human UCB to determine their osteogenic potential by using different kinds of osteogenic medium. Eventually, only those MSCs cultured in osteogenic media enriched with vitamin D2 and FGF9, were positive for osteocalcin by RT-PCR. All these cells were positive for alizarin red, alkaline phosphatase and Von Kossa. The results obtained from RT-PCR have confirmed that osteogenesis is complete by expression of the osteocalcin marker. In conclusion, vitamin D2, at least in vitro, may replace vitamin D3 as an osteogenic stimulator factor for MSC differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1–4
Figs. 5–8
Figs. 9–11

Similar content being viewed by others

References

  • Aubin JE, Heersche JN (2000) Osteoprogenitor cell differentiation to mature bone forming osteoblasts. Drug Dev Res 49:206–215. doi:10.1002/(SICI)1098-2299(200003)49:3<206::AID-DDR11>3.0.CO;2-G

    Article  CAS  Google Scholar 

  • Aubin JE, Malaval F, Gupta AK (1995) Osteoblasts and chondroblasts differentiation. Bone 17(2):77–83. doi:10.1016/8756-3282(95)00183-E

    Article  Google Scholar 

  • Bieback K, Kern S, Kutler H, Eichler H (2004) Critical parameters for isolation of mesenchymal stem cells from umbilical cord. Stem Cells 22:625–634. doi:10.1634/stemcells.22-4-625 Alpha Med Press

    Article  PubMed  Google Scholar 

  • Blank U, Karlsson G, Karlsson S (2007) Signaling pathway governing stem cell fate. Blood 111(2):492–503. doi:10.1182/blood-2007-07-075168

    Article  PubMed  Google Scholar 

  • Bodine PVN (2008) Wnt signaling control of bone cell apoptosis. Cell Res 18:248–253. doi:10.1038/cr.2008.13

    Article  CAS  PubMed  Google Scholar 

  • Boissy P, Malaval L, Jurdic P (2000) Osteoblasts et osteoclastes une cooperation exemplaire entre cellules mesenchymateuses et cellules hematopoietiques. Hematologie-Montrouge 6(1):6–16

    CAS  Google Scholar 

  • Chamberlain G, Fox J, Ashton B, Middleton J (2007) Mesenchymal stem cells: their phenotype, differentiation capacity, immunological features and potential for homing. Stem Cells 25:2739–2749. doi:10.1634/stemcells.2007-0197

    Article  CAS  PubMed  Google Scholar 

  • Chang YJ, Shih DTB, Tseng CP, Hsieh TB, Lee DC, Hwang SM (2006) Disparate mesenchymal lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord. Stem Cells 24:679–685. doi:10.1634/stemcells.2004-0308

    Article  CAS  PubMed  Google Scholar 

  • Chao NJ, Emerson SG, Weinberg KI (2004) Stem cell transplantation. Hematology (Am Soc Hematol Educ Program) 354–371. doi:10.1182/asheducation-2004.1.354

  • Chen F, Tao K, Mao T, Chen S, Ding G, Gu X (2002) Bone graft in the shape of human mandibular condyle reconstruction via seeding marrow-derived osteoblasts into porous coral in a nude mice model. Am Assoc Oral Maxillofac Surg 60:1155–1158

    Article  Google Scholar 

  • Chen F, Chen S, Tao K, Feng X, Liu Y, Lei D, Mao T (2004) Marrow derived osteoblasts seed into porous natural coral to prefabricate a vascularised bone graft in the shape of a human mandibular ramus: experimental study in rabbits. Br J Oral Maxillofac Surg 42:532–537

    PubMed  Google Scholar 

  • de Bari C, Dell’Accio F (2007) Mesenchymal stem cells in rheumatology: a regenerative approach to joint repair. Clin Sci 113:339–348. doi:10.1042/CS20070126

    Article  PubMed  Google Scholar 

  • de Winter EA (2003) What is the future of stem cells? Cytotechnology 43:133–138. doi:10.1023/A:1024874706356

    Article  Google Scholar 

  • Duplomb L, Dagouassat M, Jourdon P, Heymann D (2007) Embryonic stem cells: a new tool to study osteoblast and osteoclasts differentiation. Stem Cells 25:544–552. doi:10.1634/stemcells.2006-0395

    Article  CAS  PubMed  Google Scholar 

  • Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Olivier DA, Qinn CO, Wall DA (2001) Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant 7:581–588. doi:10.1053/bbmt.2001.v7.pm11760145

    Article  CAS  PubMed  Google Scholar 

  • Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum S, Ross P, Kopan R, Long F (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14(3):306–312. doi:10.1038/nm1716

    Article  CAS  PubMed  Google Scholar 

  • Holick MF, Biancuzzo RM, Chen TC, Klein EK, Young A, Bibuld D, Reitz R, Salameh W, Ameri A, Tannenbaum AD (2008) Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D. J Clin Endocrinol Metab 3:677–681

    Google Scholar 

  • Horwitz EM, Gordon PL, Koo W, Marx JC, Neel MD, McNall RY, Muul L, Hofman T (2002) Isolated allogeneic bone marrow derived mesenchymal stem cells engraft and stimulate growth in children with osteogenesis imperfecta: implication for cell therapy of bone. Proc Natl Acad Sci USA 99(13):8932–8937. doi:10.1073/pnas.132252399

    Article  CAS  PubMed  Google Scholar 

  • Jang YK, Jung DH, Jung MH, Kim DH, Yoo KH, Sung KW, Oh W, Yang YS, Yang SE (2006) Mesenchymal stem cells feed layer from human umbilical cord blood for ex vivo expanded growth and proliferation of hematopoietic progenitor cells. Ann Hematol 85:212–225. doi:10.1007/s00277-005-0047-3

    Article  PubMed  Google Scholar 

  • Jono S, Nishizawa Y, Shioi A, Morii H (1998) 1,25 dihydroxyvitamin D3 increases in vitro vascular calcification by modulating secretion of endogenous parathyroid hormone-related peptide. J Am Heart Assoc Circ 98:1302–1306

    CAS  Google Scholar 

  • Kalmoz LP, Kolbus A, Wick N, Mazal PR, Eisenbock B, Burjak S, Meissl G (2006) Cultured human epithelium: human umbilical cord blood stem cells differentiate into keratinocytes. Burns 32:16–19. doi:10.1016/j.burns.2005.08.020

    Article  Google Scholar 

  • Kang XQ, Zang WJ, Bao LJ, Li DL, Xu XL, Yu XJ (2006) Differentiating characterization of human umbilical cord blood-derived mesenchymal stem cells in vitro. Cell Biol Int 30:569–575. doi:10.1016/j.cellbi.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Kim SY, Park SY, Kim YM, Kim JM, Lee MH, Ryu HM (2004) Mesenchymal progenitor cells in the human umbilical cord. Ann Hematol 83:733–738. doi:10.1007/s00277-004-0918-z

    Article  CAS  PubMed  Google Scholar 

  • Koblas T, Harman SM, Saudek F (2005) The application of umbilical cord cells in the treatment of diabetes mellitus. Rev Diabet Stud 2:228–234. doi:10.1900/RDS.2005.2.228

    Article  PubMed  Google Scholar 

  • Koc O, Lazarus HM (2001) Mesenchymal stem cells: heading into the clinic. Bone Marrow Transplant 27:235–239. doi:10.1038/sj.bmt.1702791

    Article  CAS  PubMed  Google Scholar 

  • Kogler G, Wernet P (2006) Pluripotent stem cells from umbilical cord; stem cell transplantation. Biol Process Ther 7:3–86

    Google Scholar 

  • Lee HS, Huang GT, Chiou LL, Chen MH, Hsieh CH, Jiang CC (2003) Multipotent mesenchymal stem cells from bone marrow near site of osteonecrosis. Stem Cells 21:190–199. doi:10.1634/stemcells.21-2-190

    Article  CAS  PubMed  Google Scholar 

  • Lee OK, Kuo TK, Chen WM, Lee KD, Hsien SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103(5):1669–1675. doi:10.1182/blood-2003-05-1670

    Article  CAS  PubMed  Google Scholar 

  • Lee HW, Suh JH, Kim AY, Lee YS, Park SY, Kim JB (2006) Histone deacetylase 1-mediated histone modification regulates osteoblasts differentiation. Mol Endo 20(10):2432–2443

    Article  CAS  Google Scholar 

  • Liu TM, Martina M, Hutmacher DW, Po Hui JH, Lee EH, Lim B (2007) Identification of common pathways mediating differentiation of bone marrow and adipose tissue derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 25(3):750–760. doi:10.1634/stemcells.2006-0394

    Article  PubMed  Google Scholar 

  • Long MW, Robinson JA, Ashcraft EA, Mann KG (1995) Regulation of human bone marrow derived osteoprogenitor cells by osteogenic growth factors. J Clin Invest 95:881–887. doi:10.1172/JCI117738

    Article  CAS  PubMed  Google Scholar 

  • Majhal NS, Weisdorf DJ, Wagner JE, Defor TE, Brunstein CG, Burns LJ (2006) Comparable results of umbilical cord blood and HLA matched sibling donor hematopietic stem cell transplant after reduced-intensity preparative regimen for advanced Hodgikin’s lymphoma. Blood 107(9):3804–3807. doi:10.1182/blood-2005-09-3827

    Article  Google Scholar 

  • Maurice S, Srouji S, Livne E (2007) Isolation of progenitor cells from cord blood using adhesion matrices. Cytotechnology 54(2):121–133

    Article  CAS  PubMed  Google Scholar 

  • Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Soc Exp Biol Med 226:507–520

    CAS  Google Scholar 

  • Musina RA, Bekchanova ES, Belyaskii AV, Grinenko TS, Sukhikh GT (2007) Umbilical cord blood mesenchymal stem cells. Bull Exp Biol Med 143(1):15–20. doi:10.1007/s10517-007-0032-z

    Article  Google Scholar 

  • Park KS, Lee YS, Kang KS (2006) In vitro neuronal and osteogenic differentiation of mesenchymal stem cells from human umbilical cord blood. J Vet Sci 7(4):343–348

    PubMed  Google Scholar 

  • Park KS, Jung KH, Kim SH, Choi MR, Kim Y, Chai YG (2007) Functional expression of ion channels in mesenchymal stem cells derived from umbilical cord vein. Stem Cells 25(8):2044–2052. doi:10.1634/stemcells.2006-0735

    Article  CAS  PubMed  Google Scholar 

  • Purpura KA, Aubin JE, Zandstra PW (2004) Sustained in vitro expansion of bone progenitors is cell density dependent. Stem Cells 22:39–50. doi:10.1634/stemcells.22-1-39

    Article  CAS  PubMed  Google Scholar 

  • Rebelatto CK, Aguiar AM, Moretão MP, Senegaglia AC, Hansen P, Barchiki F, Oliveira J, Martins J, Kuligovski C, Mansur F, Christofis A, Amaral VF, Brofman PS, Goldenberg S, Nakao LS, Correa A (2008) Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med 233:901–913. doi:10.3181/0712-RM-356

    Article  CAS  Google Scholar 

  • Reddi AH (2006) Bone regeneration. In: Battler A, Leor J (eds) Stem cell and gene-based therapy: frontiers in regenerative medicine. Springer-Verlag, New York, pp 195–199 (13)

    Google Scholar 

  • Reiser J, Zhang XY, Hemenway CS, Mondal D, Pradhan L, La Russa VF (2005) Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther 5(12):1571–1584. doi:10.1517/14712598.5.12.1571

    Article  CAS  PubMed  Google Scholar 

  • Riordan NH, Chan K, Marleau AM (2007) TE Ichim; cord blood in regenerative medicine: do we need immune suppression? J Transl Med 5(8):1–9

    Google Scholar 

  • Rosada C, Justensen J, Melsvik D, Ebbesen P, Kassem M (2003) The human umbilical cord blood: a potential source for osteoblast progenitor cells. Calcif Tissue Int 72:135–142. doi:10.1007/s00223-002-2002-9

    Article  CAS  PubMed  Google Scholar 

  • Song L, Tuan RS (2004) Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J 18:980–985

    CAS  PubMed  Google Scholar 

  • Stocum DL (2006) Regenerative biology and medicine. Elsevier, Boston, pp 229–237

    Google Scholar 

  • Sudo K, Kanno M, Miharada K, Ogawa S, Hiroyama T, Saijo K, Nakamura Y (2007) Mesenchyma progenitors are able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary fibroblast-like cell population. Stem Cells 25:1610–1617. doi:10.1634/stemcells.2006-0504

    Article  CAS  PubMed  Google Scholar 

  • Tsai MS, Hwang SM, Chen KD, Lee YS, Hsu LW, Chang YJ, Wang CN, Peng HH, Chang YL, Chao AS, Chang SD, Lee KD, Wang TH, Wang HS, Soong YK (2007) Functional network analysis on the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood and bone marrow. Stem Cells Express 25(10):2511–2523

    Article  CAS  Google Scholar 

  • Tse W, Laughlin MJ (2005) Umbilical cord transplantation: a new alternative option. J Hematol 37:7–383

    Google Scholar 

  • Tuan RS, Chen FH (2006) Cartilage. In: Battler A, Leor J (eds) Stem cell and gene-based therapy: frontiers in regenerative medicine. Springer-Verlag, New York, pp 179–189 (12)

    Google Scholar 

  • Van de Ven C, Collins D, Bradley B, Morris E, Cairo MS (2007) The potential of umbilical cord blood multipotent stem cells for nonhematopoietic tissue and cell regeneration. Exp Hematol 35:1753–1765. doi:10.1016/j.exphem.2007.08.017

    Article  PubMed  Google Scholar 

  • Waese EY, Kandel R (2007) Application of stem cells in bone repair. Skeletal Radiol 37(7):601–608

    Article  Google Scholar 

  • Xu W, Zhang X, Qian H, Zhu W, Sun X, Hu J, Zhou H, Chen Y (2004) Mesenchymal stem cells from adult bone marrow differentiate into a cardiomyocyte phenotype in vitro. Soc Exp Biol Med 229:623–631

    CAS  Google Scholar 

  • Yavrapoulou MP, Yovos JG (2007) The role of the Wnt signaling pathway in osteoblast commitment and differentiation. Hormones 6(4):279–294

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Michael Strong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toai, T.C., Thao, H.D., Thao, N.P. et al. In vitro culture and differentiation of osteoblasts from human umbilical cord blood. Cell Tissue Bank 11, 269–280 (2010). https://doi.org/10.1007/s10561-009-9141-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-009-9141-4

Keywords

Navigation