Skip to main content
Log in

Human colon tissue in organ culture: calcium and multi-mineral-induced mucosal differentiation

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

We have recently shown that a multi-mineral extract from the marine red algae, Lithothamnion calcareum, suppresses colon polyp formation and inflammation in mice. In the present study, we used intact human colon tissue in organ culture to compare responses initiated by Ca2+ supplementation versus the multi-mineral extract. Normal human colon tissue was treated for 2 d in culture with various concentrations of calcium or the mineral-rich extract. The tissue was then prepared for histology/immunohistochemistry, and the culture supernatants were assayed for levels of type I procollagen and type I collagen. At higher Ca2+ concentrations or with the mineral-rich extract, proliferation of epithelial cells at the base and walls of the mucosal crypts was suppressed, as visualized by reduced Ki67 staining. E-cadherin, a marker of differentiation, was more strongly expressed at the upper third of the crypt and at the luminal surface. Treatment with Ca2+ or with the multi-mineral extract influenced collagen turnover, with decreased procollagen and increased type I collagen. These data suggest that calcium or mineral-rich extract has the capacity to (1) promote differentiation in human colon tissue in organ culture and (2) modulate stromal function as assessed by increased levels of type I collagen. Taken together, these data suggest that human colon tissue in organ culture (supporting in vivo finding in mice) will provide a valuable model for the preclinical assessment of agents that regulate growth and differentiation in the colonic mucosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Adey W. H.; McKibbin D. L. Studies on the maerl species Phymatolithon calcareum (Pallas) nov. comb. and Lithothamnium corallioides Crouan in the Ria de Vigo. Bot. Mar. 13(2): 100–106; 1970. doi:10.1515/botm.1970.13.2.100.

    Article  Google Scholar 

  • American Cancer Society. Leading sites of new cancer and deaths—2009 estimate. Cancer facts & figures 2009. http://www.cancer.org/downloads/stt/CFF2009_LeadingSites_Est_6.pdf, cited June 27, 2010; 2009.

  • Aslam M. N.; Bhagavathula N.; Paruchuri T.; Hu X.; Chakrabarty S.; Varani J. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca(2+)-sensitive and Ca(2+)-resistant human colon carcinoma cells. Cancer Lett. 283(2): 186–192; 2009. PMID: 19394137.

    Article  CAS  PubMed  Google Scholar 

  • Aslam M. N.; Paruchuri T.; Bhagavathula N.; Varani J. A mineral-rich red algae extract inhibits polyp formation and inflammation in the gastrointestinal tract of mice on a high-fat diet. Integr. Cancer. Ther. 9(1): 93–99; 2010. PMID: 20150219.

    Article  PubMed  Google Scholar 

  • Autrup H. Explant culture of human colon. Methods Cell. Biol. 21B: 385–401; 1980. PMID: 7191040.

    Article  CAS  PubMed  Google Scholar 

  • Autrup H.; Barrett L. A.; Jackson F. E.; Jesudason M. L.; Stoner G.; Phelps P.; Trump B. F.; Harris C. C. Explant culture of human colon. Gastroenterology 74(6): 1248–1257; 1978. PMID: 648817.

    CAS  PubMed  Google Scholar 

  • Baron J. A.; Beach M.; Mandel J. S.; Van Stolk R. U.; Haile R. W.; Sandler R. S.; Rothstein R.; Summers R. W.; Snover D. C.; Beck G. J.; Bond J. H.; Greenberg E. R. Calcium supplements for the prevention of colorectal adenomas. Calcium Polyp Prevention Study Group. N. Engl. J. Med. 340(2): 101–107; 1999. PMID: 9887161.

    Article  CAS  PubMed  Google Scholar 

  • Beaty M. M.; Lee E. Y.; Giauert H. P. Influence of dietary calcium on colon epithelial proliferation and 1,2-dimethyhydrazine-induced colonic cancer in rats fed high fat diets. J. Nutr. 123(1): 144–152; 1993. PMID: 8421225.

    CAS  PubMed  Google Scholar 

  • Bhagavathula N.; Hanosh A. W.; Nerusu K. C.; Appelman H.; Chakrabarty S.; Varani J. Regulation of E-cadherin and β-catenin by Ca2+ in colon carcinoma is dependent on calcium-sensing receptor expression and function. Int. J. Cancer 121(7): 1455–1462; 2007. PMID: 17557293.

    Article  CAS  PubMed  Google Scholar 

  • Bhagavathula N.; Kelley E. A.; Reddy M.; Nerusu K. C.; Leonard C.; Fay K.; Chakrabarty S.; Varani J. Upregulation of calcium-sensing receptor and mitogen-activated protein kinase signaling in the regulation of growth and differentiation in colon carcinoma. Brit. J. Cancer 93(12): 1364–1371; 2005. PMID: 16278666.

    Article  CAS  PubMed  Google Scholar 

  • Bostick R. M.; Potter J. D.; Sellers T. A.; McKenzie D. R.; Kushi L. H.; Folsom A. R. Relation of calcium, vitamin D, and dairy food intake to incidence of colon cancer among older women. The Iowa Women's Health Study. Am. J. Epidermiol. 137(12): 1302–1317; 1993. PMID: 8333412.

    CAS  Google Scholar 

  • Burgart L. J. Colorectal polyps and other precursor lesions. Need for an expanded view. Gastroenterol. Clin. N. Am. 31(4): 959–970; 2002. PMID: 12489272.

    Article  Google Scholar 

  • Chakrabarty S.; Radjendirane V.; Appelman H.; Varani J. Extracellular calcium and calcium sensing receptor function in human colon carcinomas: promotion of E-cadherin expression and suppression of β-catenin/TCF activation. Cancer Res. 63(1): 67–71; 2003. PMID: 12517779.

    CAS  PubMed  Google Scholar 

  • Chakrabarty S.; Wang H.; Canaff L.; Hendy G. N.; Appelman H.; Varani J. Calcium sensing receptor in human colon carcinoma: interaction with Ca2+ and 1,25-dihydroxyvitamin D3. Cancer Res. 65(2): 493–498; 2005. PMID: 15695391.

    CAS  PubMed  Google Scholar 

  • Dame M.; Bhagavathula N.; Mankey C.; DaSilva M.; Paruchuri T.; Aslam M. N.; Varani J. Human colon tissue in organ culture: preservation of normal and neoplastic characteristics. In Vitro Cell Dev. Biol. Anim. 46(2): 114–122; 2010. PMID: 19915935.

    Article  Google Scholar 

  • Grau M. V.; Baron J. A.; Sandler R. S.; Wallace K.; Haile R. W.; Church T. R.; Beck G. J.; Summers R. W.; Barry E. L.; Cole B. F.; Snover D. C.; Rothstein R.; Mandel J. S. Prolonged effect of calcium supplementation on risk of colorectal adenomas in a randomized trial. J. Natl. Cancer Inst. 99: 129–136; 2007. PMID: 17227996.

    Article  CAS  PubMed  Google Scholar 

  • Gupta A. K.; Pretlow T. P.; Schoen R. E. Aberrant crypt foci: what we know and what we need to know. Clin. Gastroenterol. Hepatol. 5(5): 526–533; 2007. PMID: 17433788.

    Article  PubMed  Google Scholar 

  • Holt P. R.; Wolper C.; Moss S. F.; Yang K.; Lipkin M. Comparison of calcium supplementation or low-fat dairy foods on epithelial cell proliferation and differentiation. Nutr. Cancer 41(1–2): 150–155; 2001. PMID: 12094618.

    Article  CAS  PubMed  Google Scholar 

  • Kallay E.; Kifor O.; Chattopadhyay N.; Brown E. M.; Bischof M. G.; Peterlik M.; Cross H. S. Calcium-dependent c-myc proto-oncogene expression and proliferation of CACO-2 cells: a role for luminal extracellular calcium-sensing receptor. Biochem. Biophys. Res. Commun. 232: 80–83; 1997. PMID: 9125156.

    Article  CAS  PubMed  Google Scholar 

  • Kampman E.; Giovannucci E.; Van Veer P.; Rimm E.; Stampfer M. J.; Colditz G. A.; Kok F. J.; Willett W. C. Calcium, vitamin D, dairy foods, and the occurrence of colorectal adenomas among men and women in two prospective studies. Am. J. Epidemiol. 139(1): 16–29; 1994. PMID: 8296771.

    CAS  PubMed  Google Scholar 

  • Kampman E.; Slattery M. L.; Caan B.; Potter J. D. Calcium, vitamin D, sunshine exposure, dairy products and colon cancer risk. Cancer Causes Control 11(5): 459–466; 2000. PMID: 10877339.

    Article  CAS  PubMed  Google Scholar 

  • Kesisoglou F.; Schmiedlin-Ren P.; Fleisher D.; Roessler B.; Zimmermann E. M. Restituting intestinal epithelial cells exhibit increased transducibility by adenoviral vectors. J. Gene Med. 8(12): 1379–1392; 2006. PMID: 17133338.

    Article  CAS  PubMed  Google Scholar 

  • Lamprecht S. A.; Lopkin M. Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms. Nat. Rev. Cancer 3(8): 601–614; 2003. PMID: 12894248.

    Article  CAS  PubMed  Google Scholar 

  • Lipkin M. Growth and development of gastrointestinal cells. Annu. Rev. Physiol. 47: 175–197; 1985. PMID: 3888073.

    Article  CAS  PubMed  Google Scholar 

  • Moorghen M.; Chapman M.; Appleton D. R. An organ-culture method for human colorectal mucosa using serum-free medium. J. Pathol. 180(1): 102–105; 1996. PMID: 8943824.

    Article  CAS  PubMed  Google Scholar 

  • Schmiedlin-Ren P.; Benedict P. E.; Dobbins W. O.; Ghosh M.; Kolars J. C.; Watkins P. B. Cultured adult rat jejunal explants as a model for studying regulation of CYP3A. Biochem. Pharmacol. 46: 905–918; 1993. PMID: 8373442.

    Article  CAS  PubMed  Google Scholar 

  • Senior P. V.; Pritchett C. J.; Sunter J. P.; Appleton D. R.; Watson A. J. Crypt regeneration in adult human colonic mucosa during prolonged organ culture. J. Anat. 134(3): 459–469; 1982. PMID: 7107511.

    CAS  PubMed  Google Scholar 

  • Takayama T.; Ohi M.; Hayashi T.; Miyanishi K.; Nobuoka A.; Nakajima T.; Satoh T.; Takimoto R.; Kato J.; Sakamaki S.; Niitsu Y. Analysis of K-ras, APC, and beta-catenin in aberrant crypt foci in sporadic adenoma, cancer, and familial adenomatous polyposis. Gastroenterology 121(3): 599–611; 2001. PMID: 11522744.

    Article  CAS  PubMed  Google Scholar 

  • Varani J.; Fay K.; Perone P. MDI 301, a nonirritating retinoid, induces changes in human skin that underlie repair. Arch. Dermatol. Res. 298(9): 439–448; 2007. PMID: 17146625.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported, in part, by grant 1R21CA140760 01 from the USPHAS. The authors would like to thank Deborah Postiff and Justin Reagan of the Tissue Procurement Core Laboratory, Comprehensive Cancer Center (Cancer Center Support Grant 5 P30 CA46592), as the source of the tissue specimens; Lisa Riggs (Histology Core) for her help with the preparation of tissue for histological examination; and Ron Craig (Histomorphometry Core) for his ScanScope service and assistance. Core laboratories are supported by the Department of Pathology at the University of Michigan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Dame.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dame, M.K., Veerapaneni, I., Bhagavathula, N. et al. Human colon tissue in organ culture: calcium and multi-mineral-induced mucosal differentiation. In Vitro Cell.Dev.Biol.-Animal 47, 32–38 (2011). https://doi.org/10.1007/s11626-010-9358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-010-9358-3

Keywords

Navigation