Skip to main content
Log in

Development of a zebrafish spleen cell line, ZSSJ, and its growth arrest by gamma irradiation and capacity to act as feeder cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

A zebrafish spleen cell line, ZSSJ, was developed and its growth arrest by gamma radiation determined and its capacity to stimulate the proliferation of the zebrafish blastula cell line, ZEB2J, measured. ZSSJ was initiated by explant outgrowth, grew adherent with mainly an epithelial-like morphology, and stained strongly for alkaline phosphatase. ZSSJ was not only grown in L-15 with 15% fetal bovine serum at 26°C to 28°°C but also grew at room temperature. Cultures of ZSSJ have undergone approximately 40 population doublings, had few cells staining for b-galactosidase activity, which is commonly present in senescent cultures, and many cells with an aneuploid karyotype, which is frequently associated with immortalization. ZSSJ growth was arrested by 30 to 50 Gy of g-irradiation, whereas after 20 Gy, some slight growth was observed. By contrast, growth of the rainbow trout spleen stromal cell line, RTS34st, which has been used as a feeder for zebrafish ES cell cultures, was arrested completely by 20 Gy. In cocultures, nongrowth-arrested ZSSJ stimulated ZEB2J proliferation better than growth-arrested ZSSJ and better than RTS34st. ZSSJ should be useful as a feeder cell line for zebrafish ES cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Almohamad K.; Thiry A.; Hubin F.; Belaid Z.; Humblet C.; Boniver J.; Defrense M. P. Marrow stromal cell recovery after radiation-induced aplasia in mice. Inter. J. Rad. Biol. 79: 259–267; 2003. doi:10.1080/0955300031000085740.

    Article  CAS  Google Scholar 

  • Bradford C. S.; Sun L.; Collodi P.; Barnes D. W. Cell cultures from zebrafish embryos and adult tissues. J. Tissue Culture Meth. 16: 99–107; 1994. doi:10.1007/BF01404818.

    Article  Google Scholar 

  • Bols N. C.; Barlian A.; Chirino-Trejo M.; Caldwell S. J.; Goegan P.; Lee L. E. J. Development of a cell line from primary cultures of rainbow trout, Oncorhynchus mykiss (Walbaum), gills. J. Fish Dis. 17: 601–611; 1994. doi:10.1111/j.1365-2761.1994.tb00258.x.

    Article  Google Scholar 

  • Bols N. C.; Mosser D. D.; Steels G. B. Temperature studies and recent advances with fish cells in vitro. Comp. Biochem. Physiol. 103A: 1–14; 1992. doi:10.1016/0300-9629(92)90235-I.

    Article  Google Scholar 

  • Cheng L.; Hammond H.; Ye Z.; Zhan X.; Dravid G. Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells 21: 131–142; 2003. doi:10.1634/stemcells.21-2-131.

    Article  PubMed  CAS  Google Scholar 

  • Collodi P.; Miranda C. L.; Zhao X.; Buhler D. R.; Barnes D. W. Induction of zebrafish (Brachydanio rerio) P450 in vivo and in cell culture. Xenobiotica 24: 487–493; 1994.

    PubMed  CAS  Google Scholar 

  • Diago M. L.; Lopez-Fierro M. P.; Razquin B.; Villena A. Establishment and characterization of a pronephric stromal cell line (TPS) from rainbow trout. Fish Shellfish Immunol. 5: 441–457; 1995. doi:10.1006/fsim.1995.0042.

    Article  Google Scholar 

  • Dimri G. P.; Lee X. H.; Basile G.; Acosta M.; Scott C.; Roskelley C.; Medrano E. E.; Linskens M.; Rebelji I.; Pereira-Smith O.; Peacocke M.; Campsi J. A biomarker that identifies senescent human-cells in culture and in aging in vivo. Proc. Natl. Acad. Sci. U.S.A. 92: 9363–9367; 1995. doi:10.1073/pnas.92.20.9363.

    Article  PubMed  CAS  Google Scholar 

  • Dowling K.; Seymour C.; Mothersill C. Delayed cell death and bystander effects in the progeny of Chinook salmon embryo cells exposed to radiation and a range of aquatic pollutants. Inter. J. Rad. Biol. 81: 89–95; 2005. doi:10.1080/09553000400017606.

    Article  CAS  Google Scholar 

  • Driever W.; Rangini Z. Characterization of a cell line derived from zebrafish (Brachydanio rerio) embryos. In Vitro Cell. Dev. Biol. 29A: 749–754; 1993. doi:10.1007/BF02631432.

    Article  CAS  Google Scholar 

  • Endo A.; Ingalls T. H. Chromosomes of the zebrafish. J. Hered. 59: 382–384; 1968.

    PubMed  CAS  Google Scholar 

  • Fan L.; Crodian J.; Collodi P. Culture of embryonic stem cell lines from zebrafish. Methods Cell Biol. 76: 151–160; 2004. doi:10.1016/S0091-679X(04)76009-4.

    Article  PubMed  Google Scholar 

  • Flano E.; Lopez-Fierro P.; Alvarez F.; Razquin B.; Villena A. Splenic cultures from rainbow trout, Oncorhynchus mykiss: establishment and characterization. Fish Shell Immunol. 8: 589–606; 1998. doi:10.1006/fsim.1998.0165.

    Article  Google Scholar 

  • Ganassin R. C.; Bols N. C. Development of long-term rainbow trout spleen cultures that are haemopoietic and produce dendritic cells. Fish Shell Immunol. 6: 17–34; 1996. doi:10.1006/fsim.1996.0003.

    Article  Google Scholar 

  • Ganassin R. C.; Bols N. C. A stromal cell line from rainbow trout spleen, RTS34st, that supports the growth of rainbow trout macrophages and produces conditioned medium with mitogenic effects on leukocytes. In Vitro Cell. Dev. Biol. 35: 80–86; 1999. doi:10.1007/s11626-999-0005-9.

    Article  CAS  Google Scholar 

  • Ghosh C.; Collodi P. Culture of cells from zebrafish (Brachydanio rerio) blastula-stage embryos. Cytotechnology 14: 21–26; 1994. doi:10.1007/BF00772192.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh C.; Zhou Y. L.; Collodi P. Derivation and characterization of a zebrafish liver cell line. Cell Biol. Toxicol. 10: 167–176; 1994. doi:10.1007/BF00757560.

    Article  PubMed  CAS  Google Scholar 

  • Holt S. E.; Norton J. C.; Wright W. E.; Shay J. W. Comparison of the telomeric repeat amplification protocol (TRAP) to the new TRAP-eze telomerase detection kit. Methods Cell Sci. 18: 237–248; 1996. doi:10.1007/BF00132889.

    Article  Google Scholar 

  • Hubin F.; Humblet C.; Belaid Z.; Lambert C.; Boniver J.; Thiry A.; Defresne M. P. Murine bone marrow stromal cells sustain in vivo the survival of hematopoietic stem cells and the granulopoietic differentiation of more mature progenitors. Stem Cells 23: 1626–1633; 2005. doi:10.1634/stemcells.2005-0041.

    Article  PubMed  Google Scholar 

  • Hyodo M.; Katsumata M.; Takagi S.; Takada T.; Miyajima S.; Morozumi T.; Matsuhashi M. Characterization of developmental potential in isolated medaka blastomeres and cultured embryonic cells. J. Mar. Biotechnol. 6: 23–29; 1998.

    Google Scholar 

  • Itoh K.; Tezuka H.; Sakoda H.; Konno M.; Nagata K.; Uchiyama T.; Uchino H.; Mori K. J. Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow. Exp. Hematol. 17: 145–153; 1989.

    PubMed  CAS  Google Scholar 

  • Kampinga H. H.; Dikomey E. Hyperthermic radiosensitization: mode of action and clinical relevance. Int. J. Rad. Biol. 77: 399–408; 2001. doi:10.1080/09553000010024687.

    Article  PubMed  CAS  Google Scholar 

  • Kessinger A.; Murphy B. O.; Jackson J. D.; Sharp J. G. An ex vivo model of hematopoietic stem cell mobilization. Cyotherapy 7: 463–469; 2005. doi:10.1080/14653240500361418.

    Article  CAS  Google Scholar 

  • Krone P. H.; Sass J. B.; Lele S. Heat shock protein gene expression during embryonic development of the zebrafish. Cell. Mol. Life Sci. 53: 122–129; 1997. doi:10.1007/PL00000574.

    Article  PubMed  CAS  Google Scholar 

  • Ma C.; Fan L.; Ganassin R.; Bols N. C.; Collodi P. Production of zebrafish germ-line chimeras from embryo cell cultures. PNAS 98: 2461–2466; 2001. doi:10.1073/pnas.041449398.

    Article  PubMed  CAS  Google Scholar 

  • Miranda C. L.; Collodi P.; Zhao X.; Barnes D. W.; Buhler D. R. Regulation of cytochrome P450 expression in a novel liver cell line from zebrafish (Brachydanio rerio). Arch. Biochem. Biophys. 205: 320–327; 1993. doi:10.1006/abbi.1993.1429.

    Article  Google Scholar 

  • Pando M. P.; Pinchak A. B.; Cermakian N.; Sassone-Corsi P. A cell-based system that recapitulates the dynamic light-dependent regulation of the vertebrate clock. PNAS 98: 10178–10183; 2001. doi:10.1073/pnas.181228598.

    Article  PubMed  CAS  Google Scholar 

  • Paw B. H.; Zon L. I. Primary fibroblast cell culture. Methods Cell Biol. 59: 39–43; 1999. doi:10.1016/S0091-679X(08)61819-1.

    Article  PubMed  CAS  Google Scholar 

  • Peppelenbosch M. P.; Tertoolen L. G. J.; De Laat S. W.; Zivkovic D. Ionic responses to epidermal growth factor in zebrafish cells. Exp. Cell Res. 218: 183–188; 1995. doi:10.1006/excr.1995.1146.

    Article  PubMed  CAS  Google Scholar 

  • Press C. M.; Dannevig B. H.; Landsverk T. Immune and enzyme histochemical phenotypes of lymphoid and nonlymphoid cells within the spleen and head kidney of Atlantic salmon (Salmo salar L.). Fish Shellfish Immunol. 4: 79–93; 1994. doi:10.1006/fsim.1994.1007.

    Article  Google Scholar 

  • Rasnick D. Auto-catalyzed progression of aneuploidy explains the Hayflick limit of cultured cells, carcinogen-induced tumours in mice, and the age distribution of human cancer. Biochem. J. 348: 497–506; 2000. doi:10.1042/0264-6021:3480497.

    Article  PubMed  CAS  Google Scholar 

  • Richards M.; Tan S.; Fong C. Y.; Biswas A.; Chan W. K.; Bongso A. Comparative evaluations of various feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells 21: 546–556; 2003. doi:10.1634/stemcells.21-5-546.

    Article  PubMed  CAS  Google Scholar 

  • Riley G. P.; Gordon M. Y. Characterization of cultured stromal layers derived from fetal and adult hematopoietic tissues. Exp. Hematol. 15: 78–84; 1987.

    PubMed  CAS  Google Scholar 

  • Roy A.; Krzykwa E.; Lemieux R.; Neron S. Technology report—increased efficiency of gamma-irradiated versus mitomycin C-treated feeder cells for the expansion of normal human cells in long-term culture. J. Hematother. Stem Cell Res. 10: 873–880; 2001. doi:10.1089/152581601317210962.

    Article  PubMed  CAS  Google Scholar 

  • Schirone R. C.; Gross L. Effect of temperature on early embryological development of zebrafish (Brachydanio rerio). J. Exp. Zool. 169: 43–52; 1968. doi:10.1002/jez.1401690106.

    Article  Google Scholar 

  • Traver D.; Winzeler A.; Stern H. M.; Mayhall E. A.; Langenau D. M.; Kutok J. L.; Look A. T.; Zon L. I. Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. Blood 104: 1298–1305; 2004. doi:10.1182/blood-2004-01-0100.

    Article  PubMed  CAS  Google Scholar 

  • Wakamatsu Y.; Ozato K.; Sasado T. Establishment of a pluripotent cell line derived from a medaka (Oryzias latipes) blastula embryo. Mol. Marine Biol. Biotech. 3: 185–191; 1994.

    CAS  Google Scholar 

  • Westen H.; Bainton D. F. Association of alkaline-phosphatase-positive reticulum cells in bone marrow with granulocytic precursors. J. Exp. Med. 150: 919–937; 1979. doi:10.1084/jem.150.4.919.

    Article  PubMed  CAS  Google Scholar 

  • Whitmore D.; Foulkes N. S.; Sassone-Corsi P. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 404: 87–91; 2000. doi:10.1038/35003589.

    Article  PubMed  CAS  Google Scholar 

  • Xie G.-Q.; Lin G.; Yuang D.; Wang J.; Liu T. C.; Lu G.-X. Proliferative feeder cells support prolonged expansion of human embryonic stem cells. Cell Biol. Int. 29: 623–628; 2005. doi:10.1016/j.cellbi.2005.03.015.

    Article  PubMed  CAS  Google Scholar 

  • Xing J. G.; Lee L. E. J.; Fan L.; Collodi P.; Holt S. E.; Bols N. C. Initiation of a zebrafish blastula cell line on rainbow trout stromal cells and subsequent development under feeder-free conditions into a cell line, ZEB2J. Zebrafish 5: 49–63; 2008. doi:10.1089/zeb.2007.0512.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H.; Yumoto T. Alkaline phosphatase positive reticular cells of chicken bone marrow in vivo and in vitro studies. Int. J. Cell Cloning 5: 35–54; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Young W. P.; Wheeler P. A.; Coryell V. H.; Keim P.; Thorgaard G. H. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics 148: 839–850; 1998.

    PubMed  CAS  Google Scholar 

  • Zhang M.; Sell S.; Leffert H. L. Hepatic progenitor cell lines from allyl alcohol-treated adult rats are derived from g-irradiated mouse STO cells. Stem Cells 21: 449–458; 2003. doi:10.1634/stemcells.21-4-449.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the U. S. National Institute of Health (NIH GM069383) and from the Natural Sciences and Engineering Research Council of Canada (NSERC). The authors thank Rob Barnett of the Grand River Hospital for help with the gamma irradiation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. C. Bols.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, J.G., El-Sweisi, W., Lee, L.E.J. et al. Development of a zebrafish spleen cell line, ZSSJ, and its growth arrest by gamma irradiation and capacity to act as feeder cells. In Vitro Cell.Dev.Biol.-Animal 45, 163–174 (2009). https://doi.org/10.1007/s11626-008-9159-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-008-9159-0

Keywords

Navigation