Skip to main content
Log in

Comparison of the telomeric repeat amplification protocol (TRAP) to the new TRAP-eze telomerase detection kit

  • Biotechnology
  • Published:
Methods in Cell Science

Abstract

The ribonucleoprotein, telomerase, is believed to be responsible for the maintenance of telomere length in immortal and cancer cells. A PCR-based assay for the detection of telomerase activity (TRAP assay: telomeric repeat amplification protocol) was developed, allowing fast and efficient detection of telomerase activity when sample amounts are limiting. Of the thousands of primary human tumors examined using the TRAP assay, almost 90% have been shown to exhibit telomerase activity. Thus, for the early detection of cancer and for the rapid screening of compounds and drugs in cancer therapeutics, methods for the detection of telomerase activity are rapidly emerging. The recently developed TRAP-ezeTM kit from Oncor, Inc. gives increased sensitivity with decrease sample processing time, allowing improved detection of telomerase activity in a large number of samples. In the present study, we have addressed some of the technical aspects and limitations of critical importance for reproducibility, reliability, and linearity of the standard TRAP assay and the TRAP-ezeTM kit using cell culture and clinical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RP:

modified reverse primer (CX) for PCR amplification of telomerase products

AEBSF:

4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride

CHAPS:

3-[(3-cholamidopropyl)dimethylammoniol-1-propanesulfonate

CX:

reverse primer for PCR amplification of telomerase products for standard TRAP

DEPC:

diethyl pyrocabonate

EGTA:

ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid

HPLC:

high pressure liquid chromatography

ITAS:

internal telomerase assay standard

PCR:

polymerase chain reaction

T4g32 protein:

T4 gene 32 protein

TRAP:

telomeric repeat amplification protocol

TRF:

terminal restriction fragment

TS:

primer that serves as a substrate for telomerase

References

  1. Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB (1992). Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci (USA) 89: 10114–10118.

    Google Scholar 

  2. Broccolli D, Young JW, de Lange T (1995). Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci (USA) 92: 9082–9086.

    Google Scholar 

  3. Counter CM, Avillon AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S (1992). Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11: 1921–1929.

    Google Scholar 

  4. Counter CM, Botelho FM, Wang P, Harley CB, Bacchetti S (1994). Stabilization of short telomeres and telomerase activity accompany immortalization of Epstein-Barr virus-transformed human B lymphocytes. J Virol 68: 3410–3414.

    Google Scholar 

  5. Counter CM, Hirte HW, Bacchetti S, Harley CB (1994). Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci (USA) 91: 2900–2904.

    Google Scholar 

  6. Greider CW, Blackburn EH (1985). Identification of a specific telomere terminal transferase activity inTetrahymena extracts. Cell 43: 405–413.

    Google Scholar 

  7. Greider CW, Blackburn EH (1989). A telomeric sequence in the RNA ofTetrahymena telomerase required for telomere repeat synthesis. Nature 337: 331–337.

    Google Scholar 

  8. Harley CB, Futcher AB, Greider CW (1990). Telomeres shorten during aging. Nature 345: 458–460.

    Google Scholar 

  9. Harris CC (1987). Human tissues and cells in carcinogenesis research. Cancer Res 47: 1–10.

    Google Scholar 

  10. Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC (1990). Telomere reduction in human colorectal carcinoma and with ageing. Nature 346: 866–868.

    Google Scholar 

  11. Hiyama E, Hiyama K, Yokoyama T, Matsuura Y, Piatyszek MA, Shay JW (1995). Correlation of telomerase activity level with human neuroblastoma outcomes. Nature Medicine 1: 249–257.

    Google Scholar 

  12. Hiyama K, Hiyama E, Ishoika S, Yamakido M, Inai K, Gazdar AF, Piatyszek MA, Shay JW (1995). Telomerase activity in small-cell and non-small-cell lung cancers. J Natl Cancer Inst 87: 895–902.

    Google Scholar 

  13. Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, Piatyszek MA, Shay JW, Ishoika S, Yamakido M (1995). Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J Immuno 155: 3711–3715.

    Google Scholar 

  14. Hiyama E, Yokoyama T, Tatsumoto N, Hiyama K, Imamura Y, Murakami Y, Kodama T, Piatyszek M, Shay JW, Matsuura Y (1995). Telomerase activity in gastric cancer. Cancer Res 55: 3258–3262.

    Google Scholar 

  15. Hiyama E, Gollahon L, Kataoka T, Kuroi K, Yokoyama T, Gazdar AF, Hiyama K, Piatyszek MA, Shay JW (1996). Telomerase activity in human breast tumors. J Natl Cancer Inst 88: 116–122.

    Google Scholar 

  16. Holt SE, Wright WE, Shay JW (1996). Regulation of telomerase activity in immortal cell lines. Molec Cell Biol 16: 2932–2939.

    Google Scholar 

  17. Holt SE, Shay JW, Wright WE (1996). Refining the Telomere-Telomerase hypothesis of aging and cancer. Nature Biotech 14: 834–837.

    Google Scholar 

  18. Huschtscha LL, Holliday R (1983). Limited and unlimited growth of SV40-transformed cells from human diploid MRC-5 fibroblasts. J Cell Sci 63: 77–99.

    Google Scholar 

  19. Kaczorowski T, Furmanek B, Sektas MA (1994). Method for removal of radioactive nucleotides from electrophoretic buffers. BioTechniques 1994; 16: 1030–1031.

    Google Scholar 

  20. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PLC, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994). Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011–2015.

    Google Scholar 

  21. Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB (1992). Telomere end-replication problem and cell aging. J Mol Biol 225: 951–960.

    Google Scholar 

  22. Morin GB (1989). The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59: 521–529.

    Google Scholar 

  23. Norton JC, Piatyszek MA, Wright WE, Shay JW, Corey DR (1996). Inhibition of human telomerase activity by peptide nucleic acids. Nature Biotech 14: 1615–1619.

    Google Scholar 

  24. Olovnikov AM (1973). A theory of marginotomy. J Theor Biol 41: 181–190.

    Google Scholar 

  25. Piatyszek MA, Kim NW, Weinrich SL, Hiyama K, Hiyama E, Wright WE, Shay JW (1995). Detection of telomerase activity in human cells and tumors by a telomeric repeat amplification protocol (TRAP). Meth Cell Sci 17: 1–15.

    Google Scholar 

  26. Sharma HW, Sokoloski JA, Perez JR, Maltese JY, Sartorelli AC, Stein CA, Nichols G, Khaled Z, Telang NT, Narayaman R (1995). Differentiation of immortal cells inhibits telomerase activity. Proc Natl Acad Sci USA 92: 12343–12346.

    Google Scholar 

  27. Shay JW, Pereira-Smith OM, Wright WE (1991). A role for both Rb and p53 in the regulation of human cellular senescence. Exp Cell Res 196: 33–39.

    Google Scholar 

  28. Shay JW, Wright WE, Werbin H (1991). Defining the molecular mechanisms of human cell immortalization. Biochem Biophys Acta 1072: 1–7.

    Google Scholar 

  29. Sommerfeld HJ, Meeker AK, Piatyszek MA, Bova GS, Shay JW, Coffey DS (1995). Telomerase activity: A prevalent marker of malignant human prostate tissue. Cancer Res 56: 218–222.

    Google Scholar 

  30. Taylor RS, Ramirez RD, Ogoshi M, Chaffins M, Piatyszek MA, Shay JW (1996). Detection of telomerase activity in malignant and nonmalignant skin conditions. J Invest Dermatol 106: 759–765.

    Google Scholar 

  31. Vaziri H, Schächter F, Uchida I, Wei L, Zhu X, Effros R, Cohen D, Harley CB (1993). Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet 52: 661–667.

    Google Scholar 

  32. Watson JD (1972). Origin of concatameric T4 DNA. Nature 239: 197–201.

    Google Scholar 

  33. Wright WE, Pereira-Smith OM, Shay JW (1989). Reversible cellular senescence: Implications for a two-stage model for the immortalization of normal human diploid fibroblasts. Mol Cell Biol 9: 3088–3092.

    Google Scholar 

  34. Wright WE, Shay JW, Piatyszek MA (1995). Modifications of a telomeric repeat amplification protocol (TRAP) result in increased reliability, linearity and sensitivity. Nuc Acids Res 23: 3794–3795.

    Google Scholar 

  35. Wright WE, Shay JW (1992). The two-stage mechanism controlling cellular senescence and immortalization. Exp Geron 27: 383–389.

    Google Scholar 

  36. Wright WE, Shay JW (1992). Telomere positional effects and the regulation of cellular senescence. Trends Genet 8: 193–197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry W. Shay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holt, S.E., Norton, J.C., Wright, W.E. et al. Comparison of the telomeric repeat amplification protocol (TRAP) to the new TRAP-eze telomerase detection kit. Methods Cell Sci 18, 237–248 (1996). https://doi.org/10.1007/BF00132889

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00132889

Key words

Navigation