Skip to main content

Advertisement

Log in

An alternative method to isoenzyme profile for cell line identification and interspecies cross-contaminations: cytochrome b PCR-RLFP analysis

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

One of the major risks in cell culture laboratories is the misidentification and cross-contamination of cell lines. Several methods have been used to authenticate cell lines, including isoenzyme profiling, the test suggested by European Farmacopeia, which is performed at the Tissue Culture Centre in Brescia. However, this method displays several disadvantages, such as high variability and low reproducibility, and it is time consuming and requires high cell concentrations to be performed. Therefore, an alternative method has been developed to confirm the specie of origin of 27 different animal cell cultures. A polymerase chain reaction (PCR)–restriction fragment length polymorphism (RFLP) assay was optimized, based on the use of a pair of primers that anneal to a portion of the cytochrome b gene in all the species. The amplification product was digested with a panel of six restriction enzymes, and the pattern derived was resolved on 3% high-resolution agarose gel. For 23 species, this protocol produced a unique restriction pattern, and the origin of these animal cells resulted to be confirmed by this analysis. Furthermore, results indicate that cytochrome b PCR-RFLP was able to amplify target sequences using very low amounts of deoxyribonucleic acid (DNA). Its sensitivity in detecting interspecies, cross-contamination was comparable to that of isoenzyme analysis (contaminating DNA should represent at least 10% of the total DNA). For 4 of the 27 species (sheep, dog, Guinea pig, and Rhesus monkey) the observed pattern, even if highly reproducible, showed additional bands; for these species, specific PCR was also performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Bellagamba F.; Moretti V. M.; Comincini S.; Valfrè F. Identification of species in animal feedstuffs by polymerase chain reaction—restriction fragment length polymorphism analysis of mitochondrial DNA. J. Agric. Food Chem. 498: 3775–3781; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Bottero M. T.; Dalmasso I. A.; Nucera D.; Turi R. M.; Rosati S.; Squadrone S.; Goria M.; Civera T. Development of a PCR assay for the detection of animal tissues in ruminant feeds. J. Food Prot 6612: 2307–2312; 2003.

    PubMed  CAS  Google Scholar 

  • Bravi C. M.; Lirόn J. P.; Mirol P. M.; Ripoli M. V.; Peral-Garcia P.; Giovambattista G. A simple method for domestic animal identification in Argentina using PCR-RFLP analysis of cytochrome b gene. Leg. Med. (Tokyo) 64: 246–251; 2004.

    CAS  Google Scholar 

  • Cooper J. K.; Sykes G.; King S.; Cottrill K.; Ivanova N. V.; Hanner R.; Ikonomi P. Species identification in cell culture: a two-pronged molecular approach. In Vitro Cell Dev. Biol.—Anim. 43: 344–351; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Coupe S.; Sarfati C.; Hamane S.; Derouin F. Detection of cryptosporidium and identification to the species level by nested PCR and restriction fragment length polymorphism. J. Clin. Microbiol. 433: 1017–1023; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Dalmasso A.; Fontanella E.; Piatti P.; Civera T.; Rosati S.; Bottero M. T. A multiplex PCR assay for the identification of animal species in feedstuffs. Mol. Cell. Probes 182: 81–87; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Dirks W.; MacLeod R. A.; Jäger K.; Milch H.; Drexler H. G. First searchable database for DNA profiles of human cell lines: sequential use of fingerprint techniques for authentication. Cell. Mol. Biol. 456: 841–853; 1999.

    PubMed  CAS  Google Scholar 

  • Gao H. W.; Liang C. Z.; Zhang Y. B.; Zhu L. H. Polymerase chain reaction method to detect canis materials by amplification of species-specific DNA fragment. J. AOAC Int. 875: 1195–1199; 2004.

    PubMed  CAS  Google Scholar 

  • Ha J. C.; Jung W. T.; Nam Y. S.; Moon T. W. PCR identification of ruminant tissue in raw and heat-treated meat meals. J. Food Prot. 699: 2241–2247; 2006.

    PubMed  CAS  Google Scholar 

  • Hebert P. D.; Stoeckle M. Y.; Zemlak T. S.; Francis C. M. Identification of birds through DNA barcodes. PloS Biol. 210: e312; 2004.

    Article  PubMed  Google Scholar 

  • Lanzilao I.; Burgalassi F.; Fancelli S.; Settimelli M.; Fani R. Polymerase chain reaction–restriction fragment length polymorphism analysis of mitochondrial cytb gene from species of dairy interest. J. AOAC Int. 881: 128–135; 2005.

    PubMed  CAS  Google Scholar 

  • Li Q. Q.; Zhang Y. P. Phylogenetic relationships of the macaques (Cercopithecidae: Macaca), inferred from mitochondrial DNA sequences. Biochem. Genet. 437–8: 375–386; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Martellini A.; Payment P.; Villemur R. Use of eukaryotic mitochondrial DNA to differentiate human, bovine, porcine and ovine sources in fecally contaminated surface water. Water Res. 394: 541–548; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda H.; Seo Y.; Kakizaki E.; Kozawa S.; Muraoka E.; Yukawa N. Identification of DNA of human origin based on amplification of human-specific mitochondrial cytochrome b region. Forensic Sci. Int. 1522–3: 109–114; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Meyer R.; Höfelein C.; Lüthy J.; Candrian U. Polymerase chain reaction-restriction fragment length polymorphism analysis: a simple method for species identification in food. J. AOAC Int. 786: 1542–1551; 1995.

    PubMed  CAS  Google Scholar 

  • Milanesi E.; Ajmone-Marsan P.; Bignotti E.; Losio M. N.; Bernardi J.; Chegdani F.; Soncini M.; Ferrari M. Molecular detection of cell line cross-contaminations using amplified fragment length polymorphism DNA fingerprinting technology. In Vitro Cell. Dev. Biol. Anim. 393–4: 124–130; 2003.

    PubMed  CAS  Google Scholar 

  • Mueller U. G.; Wolfenbarger L. L. AFLP genotyping and fingerprinting. Trends Ecol. Evol. 1410: 389–394; 1999.

    Article  PubMed  Google Scholar 

  • Murray B. W.; McClymont R. A.; Strobeck C. Forensic identification of ungulate species using restriction digests of PCR-amplified mitochondrial DNA. J. Forensic Sci. 406: 943–951; 1995.

    PubMed  CAS  Google Scholar 

  • Myers M. J.; Farrell D. E.; Heller D. N.; Yancy H. F. Development of a polymerase chain reaction-based method to identify species-specific components in dog food. Am. J. Vet. Res. 651: 99–103; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Nelson-Rees W. A.; Daniels D. W.; Flandermeyer R. R. Cross-contamination of cells in culture. Science 2124493: 446–452; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Nims R. W.; Shoemaker A. P.; Bauernschub M. A.; Rec L. J.; Harbell J. W. Sensitivity of isoenzyme analysis for the detection of interspecies cell line cross-contamination. In Vitro Cell Dev. Biol.—Anim. 341: 35–39; 1998.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien S. J.; Simonson J. M.; Grabowski M. W.; Barile M. F. Analysis of multiple isoenzyme expression among twenty-two species of Mycoplasma and Acholeplasma. J. Bacteriol. 1461: 222–232; 1981.

    PubMed  CAS  Google Scholar 

  • Ono K.; Satoh M.; Yoshida T.; Ozawa Y.; Kohara A.; Takeuchi M.; Mizusawa H.; Sawada H. Species identification of animal cells by nested PCR targeted to mitochondrial DNA. In Vitro Cell Dev. Biol.—Anim. 43: 168–175; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Parodi B.; Aresu O.; Bini D.; Lorenzini R.; Schena F.; Visconti P.; Cesaro M.; Ferrera D.; Andreotti V.; Ruzzon T. Species identification and confirmation of human and animal cell lines: a PCR-based method. Biotechniques 322: 432–434, 436, 438–440; 2002.

    PubMed  CAS  Google Scholar 

  • Steube K. G.; Grunicke D.; Drexler H. G. Isoenzyme analysis as a rapid method for the examination of the species identity of cell cultures. In Vitro Cell Dev. Biol.—Anim. 312: 115–119; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Steube K. G.; Meyer C.; Uphoff C. C.; Drexler H. G. A simple method using beta-globin polymerase chain reaction for the species identification of animal cell lines—a progress report. In Vitro Cell Dev. Biol.—Anim. 3910: 468–475; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Zehner R.; Zimmermann S.; Mebs D. RFLP and sequence analysis of the cytochrome b gene of selected animals and man: methodology and forensic application. Int. J. Legal Med. 1116: 323–327; 1998.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mrs. Anna Mor, Mrs. Annalisa Ghizzardi, Mrs. Roberta Trainini, and Mrs. Eleonora Bradanini for their technical assistance. This work was supported by the Italian Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claretta G Losi.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Losi, C.G., Ferrari, S., Sossi, E. et al. An alternative method to isoenzyme profile for cell line identification and interspecies cross-contaminations: cytochrome b PCR-RLFP analysis. In Vitro Cell.Dev.Biol.-Animal 44, 321–329 (2008). https://doi.org/10.1007/s11626-008-9125-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-008-9125-x

Keywords

Navigation