Skip to main content
Log in

Phylogenetic Relationships of the Macaques (Cercopithecidae: Macaca), Inferred from Mitochondrial DNA Sequences

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

To study the phylogenetic relationships of the macaques, five gene fragments were sequenced from 40 individuals of eight species: Macaca mulatta, M. cyclopis, M. fascicularis, M. arctoides, M. assamensis, M. thibetana, M. silenus, and M. leonina. In addition, sequences of M. sylvanus were obtained from Genbank. A baboon was used as the outgroup. The phylogenetic trees were constructed using maximum-parsimony and Bayesian methods. Because five gene fragments were from the mitochondrial genome and were inherited as a single entity without recombination, we combined the five genes into a single analysis. The parsimony bootstrap proportions we obtained were higher than those from earlier studies based on the combined mtDNA dataset. Excluding M. arctoides, our results are generally consistent with the classification of Delson (1980). Our phylogenetic analyses agree with earlier studies suggesting that the mitochondrial lineages of M. arctoides share a close evolutionary relationship with the mitochondrial lineages of the fascicularis group of macaques (and M. fascicularis, specifically). M. mulatta (with respect to M. cyclopis), M. assamensis assamensis (with respect to M. thibetana), and M. leonina (with respect to M. silenus) are paraphyletic based on our analysis of mitochondrial genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abegg, C., and Thierry, B. (2002). Macaque evolution and dispersal in insular south-east Asia. Biol. J. Linn. Soc. 75:555–576.

    Article  Google Scholar 

  • Collura, R. V., and Stewart, C. B. (1995). Insertions and duplications of mitochondrial DNA in the nuclear genomes of Old World monkeys and hominoids. Nature 378:486–489.

    Article  Google Scholar 

  • Cronin, J. E., Cann, R., and Sarich, V. M. (1980). Molecular evolution and systematics of the genus Macaca. In Lindburg, D. G. (ed.), The macaques: Studies in ecology behavior and evolution. Van Nostrand Reinhold Co., New York, pp. 31–51.

    Google Scholar 

  • Deinard, A., and Smith, D. (2001). Phylogenetic relationships among the macaques: Evidence from the nuclear locus NRAMP1. J. hum. Evol. 41:45–59.

    Article  PubMed  Google Scholar 

  • Delson, E. (1980). Fossil macaques phyletic relationships and a scenario of development. In Lindburg, D. G. (ed.), The macaques: Studies in ecology behavior and evolution, Van Nostrand Reinhold Co., New York, pp. 10–30.

    Google Scholar 

  • Dewoody, J. A., Chesser, R. K., and Barker, R. J. (1999). A translocated mitochondrial cytochrome b pseudogene in voles (Rodentia: Microtus). J. Mol. Evol. 48:380–382.

    PubMed  Google Scholar 

  • Fa, J. E. (1989). The genus Macaca: A review of taxonomy and evolution. Mammal. Rev. 19:45–81.

    Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791.

    Google Scholar 

  • Fooden, J. (1976). Provisional classification and key to living species of macaques (Primates: Macaca). Folia Primatol 25:225–236.

    PubMed  Google Scholar 

  • Fooden, J. (1982). Taxonomy and evolution of the sinica group of macaques: 3. species and subspecies accounts of Macaca assamensis. Fieldiana Zool 10:1–52.

    Google Scholar 

  • Fooden, J. (1988). Taxonomy and evolution of the sinica group of macaques: 6. Interspecific comparisons and synthesis. Fieldiana Zool New Series 45:1–44.

    Google Scholar 

  • Fooden, J., and Lanyon, S. M. (1989). Blood protein allele frequencies and phylogenetic relationships in Macaca: A review. Am. J. Primatol 17:209–241.

    Article  Google Scholar 

  • Groves, C. P. (2001). Primate Taxonomy. Smithsonian Institution Press, Washington DC.

    Google Scholar 

  • Hayasaka, K., Fujii, K., and Horai, S. (1996). Molecular phylogeny of macaques: Implications of nucleotide sequences from an 896-base pair region of mitochondrial DNA. Mol. Biol. Evol. 13:1044–1053.

    PubMed  Google Scholar 

  • Hill, W. C. O. (1970). Primates: Comparative anatomy and taxonomy 8. Cynopithecinae: Papio, Mandrillus, Theropithecus. Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Hill, W. C. O. (1974). Primates: Comparative anatomy and taxonomy 7. Cynopithecinae: Cercocebus, Macaca, Cynopithecus. Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Hillis, D. M., and Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42:182–192.

    Google Scholar 

  • Hoelzer, G. A., Hoelzer, M. A., and Melnick, D. J. (1992). The evolution history of the sinica group of macaque monkeys as revealed by mtDNA restriction site analysis. Mol. Phylogenet Evol. 1:215–222.

    Article  PubMed  Google Scholar 

  • Huelsenbeck, J. P., and Hillis, D. M. (1993). Success of phylogenetic methods in the four-taxon case. Syst. Biol. 42:247–264.

    Google Scholar 

  • Huelsenbeck, J. P., and Ronquist, F. R. (2001). MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755.

    Article  PubMed  Google Scholar 

  • Huelsenbeck, J. P., Bull, J. J., and Cunningham, W. (1996). Combining data in phylogenetic analysis. Trends Ecol. Evol. 11:152–158.

    Article  Google Scholar 

  • Kumar, S., Tamura, K., Jakobsen, I. B., and Nei, M. (2001). MEGA (molecular evolutionary genetics analysis) software project. (http://www.megasoftware.net/), visited 26 September 2003.

  • Li, Q., and Zhang, Y. (2004). A Molecular Phylogeny of Macaca Based on Mitochondrial Control Region Sequences. Zool. Res. 25:385–390.

    Google Scholar 

  • Lü, X., Fu, Y., and Zhang, Y. (2002). Evolution of mitochondrial cytochrome b pseudogene in genus Nycticebus. Mol. Biol. Evol. 19:2337–2341.

    PubMed  Google Scholar 

  • Melnick, D. J., Hoelzer, G. A., Absher, R., and Ashley, M. V. (1993). MtDNA diversity in rhesus monkeys reveals overestimates of divergence time and paraphyly with neighboring species. Mol. Biol. Evol. 10:282–295.

    PubMed  Google Scholar 

  • Melnick, D. J., and Kidd, K. K. (1985). Genetic and evolutionary relationships among Asian macaques. Int. J. Primatol. 6:123–160.

    Google Scholar 

  • Morales, J., and Melnick, D. J. (1998). Phylogenetic relationships of the macaques (Cercopithecidae: Macaca) as revealed by high resolution restriction site mapping of mitochondrial ribosomal genes. J. Hum. Evol. 34:1–23.

    Article  PubMed  Google Scholar 

  • Moreiro, M. A. M., and Seuanez, H. N. (1999). Mitochondrial pseudogenes and phyletic relationships of Cebuella and Callithrix (Platyrrhini Primates). Primates 40:353–364.

    Google Scholar 

  • Murphy, W. J., Eizirik, E., O'Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E., Ryder, O. A., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001). Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351.

    Article  PubMed  Google Scholar 

  • Napier, J. R., and Napier, P. M. (1967). A Handbook of Living Primates, Academic press, London/New York.

    Google Scholar 

  • Naylor, G. J., Collins, T. M., and Brown, W. M. (1995). Hydrophobicity and phylogeny. Nature 373:565–566.

    Article  PubMed  Google Scholar 

  • Nei, M. (1991). Relative efficiencies of different tree-making methods for molecular data. In Miyamoto, M. M., and Cracraft, J. (eds.), Phylogenetic Analysis of DNA Sequences. Oxford University, New York, pp. 90–128.

    Google Scholar 

  • Nozawa, K., Shotake, T., Ohkura, Y., and Tanabe, Y., (1977). Genetic variations within and between species of Asian macaques. Jpn. J. Genet 52:15–30.

    Google Scholar 

  • Pocock, R. I. (1926). The external characters of the Catarrhine monkeys and apes. Proc. Zool. Soc. London 1479–1579.

  • Posada, D., and Crandall, K. A. (1998). Modeltest: Testing the model of DNA substitution. Bioinformatics 14:817–818.

    Article  PubMed  Google Scholar 

  • Springer, S., and Douzery, E. (1996). Secondary structure and patterns of evolution among mammalian mitochondrial 12S rRNA molecules. J. Mol. Evol. 43:357–373.

    PubMed  Google Scholar 

  • Swofford, D. L. (2001). PAUP* Phylogenetic Analysis Using Parsimony (* and other methods) 4.0b8a. Sinauer Sunderland MA.

  • Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10:512–526.

    PubMed  Google Scholar 

  • Tanaka, T., and Takenaka, O. (1996). Phylogenetic relationship of the genus Macaca inferred from DNA sequence. In International Symposium: Evolution of Asian Primates, Freude and Kyoto University Primate Research Institute, Inuyama, Aichi, Japan, p. 10.

  • Tosi, A. J., Morales, J. C., and Melnick, D. J. (2000). Comparison of Y chromosome and mtDNA phylogenies leads to unique inferences of macaque evolutionary history. Mol. Phylogenet. Evol. 17:133–144.

    Article  PubMed  Google Scholar 

  • Tosi, A. J., Morales, J. C., and Melnick, D. J. (2002). Y-chromosome and mitochondrial markers in Macaca fascicularis indicate introgression with Indochinese M. mulatta and a biogeographic barrier in the Isthmus of Kra. Int. J. Primatol. 23(1):161–178.

    Article  Google Scholar 

  • Tosi, A. J., Disotll, T. R., Morales, J. C., and Melnick, D. J. (2003a). Cercopithecine Y-chromosome data provide a test of competing morphological evolutionary hypotheses. Mol. Phylogenet. Evol. 27:510–521.

    Article  Google Scholar 

  • Tosi, A. J., Morales, J. C., and Melnick, D. J. (2003b). Paternal maternal and biparental molecular markers provide unique windows onto the evolutionary history of macaque monkeys. Evolution 57(6):1419–1435.

    Google Scholar 

  • Wang, Y. (2003). A Complete Checklist of Mammal Species and Subspecies in China, a Taxonomic and Geographic Reference. China forestry publishing house, Beijing.

    Google Scholar 

  • Wolstenholme, D. R. (1992). Animal mitochondrial DNA: Structure and evolution. In Wolstenholme, D. R. and Jeon, K. W. (eds.) “Mitochondrial genomes”, International Review of Cytology, Academic Press, San Diego, 141:173–216.

  • Yang, Z. (1994). Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. J. Mol. Evol. 39:306–314.

    Article  PubMed  Google Scholar 

  • Zhang, D. X., and Hewitt, G. M. (1996). Nuclear integrations: Challenges for mitochondrial DNA markers. Trends Ecol. Evol. 11:247–251.

    Article  Google Scholar 

  • Zhang, Y., Quan, G., Zhao, T., and Southwick, C. (1991). Distribution of Macaques (Macaca) in China. Acta. Theriologica Sinica. 11:171–185.

    Google Scholar 

  • Zhang, Y., and Shi, L. (1993). Phylogenetic relationships of macaques as inferred from restriction endonuclease analysis of mitochondrial DNA. Folia Primatol. 60:7–17.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Ping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, QQ., Zhang, YP. Phylogenetic Relationships of the Macaques (Cercopithecidae: Macaca), Inferred from Mitochondrial DNA Sequences. Biochem Genet 43, 375–386 (2005). https://doi.org/10.1007/s10528-005-6777-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-005-6777-z

Keywords

Navigation