Policy review
This section gives a brief overview of Japan’s climate policies and places the present analysis in a wider context, given that the policymaking in Japan is quite different from the western countries (Sofer 2016) in that Japan’s climate policy has been mostly shaped by bureaucracies, and other stakeholders played a limited role (Kameyama 2016). This section is based on earlier reviews by Takase and Suzuki (2011), Kuramochi (2015), and Kuriyama et al. (2019). To understand the political economy aspects, see Kameyama (2016), Sofer (2016), and Trencher et al. (2019) and the references therein. Kameyama (2016) chronicled the climate policy of Japan from 1980s until 2015, focusing on the role of premiership. Sofer (2016) gave a concise summary of the actors and their roles in Japan’s climate policy, contrasting Japan and the United States. Trencher et al. (2019) is centered around coal-fired power plants, for which Japan has been supporting domestic usage and exports. The review here focuses on the central government and does not cover sub-national or non-state actors.
Japan’s climate policy was based mainly on energy efficiency measures, such as Top-Runner Programs (Inoue and Matsumoto 2019) and building codes and labeling (Murakami et al. 2009; MLIT 2016), and voluntary actions taken by the industry (Keidanren 2013, 2019; Wakabayashi 2013; Wakabayashi and Arimura 2016). These are mainly under the remit of the Ministry of Economy, Trade, and Industry (METI). Though they are so called, voluntary action plans go through formal reviews by expert committees that are set up by the government. In particular, the Kyoto Protocol Target Achievement Plan formalized the review during the Protocol’s first commitment period. With regard to the promotion of lifestyle changes, the Ministry of the Environment has pushed for information campaigns, such as Cool Biz (since 2005). This campaign proved to be more extensive than its counterparts in other countries (Shove and Granier 2018).
Conversely, Japan has not been enthusiastic about price instruments. Overall, carbon pricing (both explicit and implicit) has been relatively weak in Japan (Ramstein et al. 2019). The fossil fuel tax, namely chikyu ondanka taisaku zei (tax for global warming countermeasures), stands at 289 JPY/t-CO2 or about 3 USD/t-CO2 (Ministry of the Environment 2020, partly because of a competitiveness concern for the industry. It is important to recognize that transport fuels have been taxed already at a high level. At the prefectural level, the Tokyo Metropolitan Government and Saitama Prefectural Government have been implementing an emissions trading scheme (ETS) for the commercial sector (Arimura and Abe 2020). The Tokyo ETS was successful during Phase 1 (2010–2014). A remarkable 25% reduction in carbon dioxide (CO2) emissions was partly attributable to the carbon price signal but also assisted by the energy savings after the 2011 energy crisis and the effect of an advisory system (Wakabayashi and Kimura 2018; Arimura and Abe 2020).
Currently, the electricity sector is going through rapid changes, including the retail deregulation of 2016, the unbundling of utilities in 2020, and new market frameworks (i.e., baseload, flexibility, non-fossil value, and capacity) (Hattori 2019). Compared to countries like Germany, Japan had a slow start in its transition to renewables (Cherp et al. 2017). The 2011 feed-in tariff (FIT) scheme helped in the growth of renewables. In particular, solar photovoltaics rose from 0.4% of Japan’s power generation in FY2011 to 6% in FY2018 (ANRE 2020a). However, the FIT also led to a gargantuan price tag of trillions of yen per year. The government is currently transitioning from the FIT scheme to a feed-in premium scheme and energy auctions to address the cost issue (Calculation Committee for Procurement Price, etc. 2020). Shiraki et al. (2021) in this issue reviews power sector policy development more fully.
However, Japan’s energy sector has not been fundamentally altered despite a series of reforms in energy policies after the 2011 nuclear disaster, because it is dictated by resource constraints and broader economic conditions. Japan has a relatively small renewable resource base compared to its electricity demand (Luderer et al. 2017) because of its high population density, and the costs of renewables are higher than those in other countries (IRENA 2019; Calculation Committee for Procurement Price, etc. 2020). Unlike many of Western countries, Japan retains a large presence of heavy industry. However, as the industry sector is one of hardest to decarbonize (Davis et al. 2018; Luderer et al. 2018) and innovative technologies have not been developed sufficiently (Ju et al. 2021), industrial mitigation presents a significant challenge for Japan.
Quantitative policy targets
In the first commitment period of the Kyoto Protocol (2008–2012), Japan honored its commitment to reduce emissions by 6% from the 1990 levels by reducing domestic emissions and purchasing credits from abroad (Ministry of the Environment 2014). In June 2009, the Aso administration announced a mid-term target of 15% emissions reduction by 2020 relative to the 2005 levels (8% reduction relative to the 1990 levels) (Prime Minister’s Office 2009). A significant modeling exercise (as part of a policy process) was conducted in preparation for this target (Fukui 2009). In September 2009, however, the newly elected, Hatoyama administration of the Democratic Party of Japan (DPJ) announced its ambition to reduce its emissions by 25% by 2020 relative to the 1990 levels (33% reduction relative to the 2005 levels) (Copenhagen Pledge), but this plan required a significant expansion of nuclear power fleets (Duffield and Woodall 2011). The pledge was overturned after the 2011 Great Eastern Japan Earthquake, tsunamis, and the Fukushima Daiichi nuclear disaster. The DPJ contemplated an alternative energy path without relying on nuclear power. However, it lost to a coalition of the Liberal Democratic Party and Komeito in the 2012 election. Japan did not take part in the second commitment period of the Kyoto Protocol. Furthermore, it downgraded its 2020 pledge to 3.8% emissions reduction relative to the 2005 levels under the prospect of limited nuclear operation (Warsaw Target) (Ministry of the Environment 2013).
In the run-up to the COP21 in Paris, the Abe administration, which won the 2012 election, submitted its Intended Nationally Determined Contribution to the UNFCCC. Herein, Japan committed to reduce its emissions by 26% by FY2030Footnote 1 from the FY 2013 levels (Government of Japan 2015). In the following year, the Cabinet approved the Plan for Global Warming Countermeasure, which included a goal to reduce emissions by 80% by 2050 (Government of Japan 2016). In 2019, the Government of Japan (2019) decided on its mid-century strategy and reiterated the 80% emissions reduction goal. In March 2020, in the 5-year update cycle of mitigation policies, Japan retained the formerly announced targets (Government of Japan 2020). Most recently, in October 2020, Prime Minster Suga made a pledge of net-zero emissions by 2050 in his inaugural speech in the parliament.
One topic of contention in Japan’s target is the choice of the reference year (Kuramochi 2015). The most significant is with respect to the Warsaw target such that a 3.8% reduction from the 2005 levels translates into a 3.1% increase from the 1990 levels. The reference year for the mid-century strategy had not yet been decided; this no longer matters since the government pledged a net-zero target (Fig. 1).
Another key feature of Japan’s long-term policy is that it is associated with a detailed emissions sectoral breakdown and energy mix (Fig. 2). Moreover, these numbers are not merely indicative targets but serve as concrete goals in policy discussions. For instance, under the nationally determined contribution (NDC), 22–24% of electricity is to be supplied by renewables, and there is an additional detailed breakdown for individual renewable technologies. Another contentious issue is the role of nuclear power, which is assumed to account for 20–22%. Although restarting nuclear power plants has been slow and only six units are operational as of April 20, 2020 (ANRE 2020b), the detailed breakdown of the power generation mix has not been revised during the update of the Strategic Energy Plan in 2018 (ANRE 2018). There are high expectations for an improvement in energy intensity of GDP with an annual improvement rate of 2.1% per year for 2014–2030, although the observed rate was 1.6% per year for 2000–2015. This could be the result of a high growth projection of gross domestic product (GDP), however (Kuriyama et al. 2019).
Mid-century strategy
In contrast to the 2030 target, Japan’s 2050 policy document is vague with respect to numerous concrete issues (Government of Japan 2019). For instance, it does not specify the reference year or demonstrate any specific pathway to achieve the 80% emission reduction goal. Nonetheless, it mentions certain notable points. The Fifth Strategic Energy Plan (ANRE 2018) also provides useful information.
First, the long-term strategy and the Strategic Energy Plan states “multi-track scenarios” or pluralistic perspectives on scenarios, and in particular, technology development. This approach is in contrast to the Japanese approach with respect to the 2030 target, for which the government has allocated emissions reduction to each technology. Second, both documents place significant emphasis on the role of technological innovations in achieving the long-term goal, with the long-term strategy touting a virtuous cycle between economic growth and mitigation. Furthermore, it mentions the link with related innovation strategies the government has already formulated. Lastly, the Strategic Energy Plan proposes a scientific review mechanism through which the government periodically reviews progress toward the transition to a clean energy system. This point has not been emphasized in the long-term strategy. It is not clear how modeling studies, such as the present one, could contribute to this proposed review mechanism.
Modeling: single-model studies
Many studies have focused on economy-wide, long-term climate change mitigation for Japan up to 2050. These can be classified into (1) single-model studies and (2) multi-model studies. For sectoral-level reviews, please refer to the companion papers (Ju et al. 2021; Sakamoto et al. 2021; Shiraki et al. 2021).
For single-model studies, Kainuma et al. (2015) used the AIM/Enduse energy systems model to analyze the implications of 80% emissions reduction by 2050. Oshiro et al. (2018) employed AIM/Enduse to analyze net zero emissions of CO2 by 2050, and found the importance of bioenergy with carbon capture and storage (BECCS). In a similar vein, Kato and Kurosawa (2019) examined 2050 emissions reduction of 80% and more, and found that reduced service demands and the availability of BECCS would be vital to achieve 90% emissions reduction. Schreyer et al. (2020) used the ReMIND model to compare 2050 net-zero targets for Australia, the European Union, Japan, and the United States, and found a smaller share of variable renewables in Japan because of its high population density.
Modeling: multi-model studies
Among multi-model studies in Japan, the earlier ones were part of the government-led policy process. In recent years, we have seen an increasing number of academic studies, including our pilot phase research (Sugiyama et al. 2019).
Government-led efforts include the Mid-Term Target Evaluation Committee (Chuki Mokuhyo Kento Iinkai) (Fukui 2009) and the Energy and Environmental Council (2012) (Enerugi Kankyo Kaigi). Both exercises were conducted as part of the policymaking process with town hall meetings and deliberative polls. They mainly analyzed six and three scenarios, respectively. The former analyzed different emissions reduction levels and policy packages, and the (modified) middle option out of the six was eventually chosen. The latter focused on different levels of nuclear power generation, and the zero nuclear case was finally selected. Unfortunately, these model inter-comparison results were not published in the academic literature, unlike the EMF studies in the United States (Fawcett et al. 2014) or Europe (Knopf et al. 2013).
In the academic literature, one of the recurring themes is the high marginal abatement costs in Japan. A five-model study by Hanaoka and Kainuma (2012) examined medium-term (2020 and 2030) marginal costs of abatement but did not focus on emissions pathways. The Asian Modeling Exercise (AME) (Calvin et al. 2012) implemented scenarios of idealized carbon prices and globally coordinated scenarios, in which four models from Japan participated. Aldy et al. (2016) contrasted the marginal cost of Japan against those from other parts of the world. Our pilot study (Sugiyama et al. 2019) compared the cost of 80% emissions reduction by 2050 in Japan against those in the United States and Europe. These four studies revealed that the marginal cost in Japan is higher than that in other countries.
As part of the EU-funded MILES project, Akimoto et al. (2015) used DNE21 + and AIM/Enduse models to analyze the intended NDC of Japan. For the EU-funded CD-Links project, Oshiro et al. (2019) compared global IAM results against two, national models (AIM/Enduse [Japan] and DNE21 + (national)), and demonstrated that Japan’s goal of 80% emissions reduction is consistent with cost-effective pathways for the 2-degree target, but not with the 1.5-degree target.
Although these studies are of crucial importance, they do not fully characterize the inter-model uncertainty in assessing the 2050 target, including technology availability (Clarke et al. 2014a). For instance, in the wake of the Fukushima nuclear disaster, more attention has been paid to the future of power generation mix, and the costs of bringing about a desired mix. And yet, it is well known (at least at the global scale) that such a power mix is subject to enormous uncertainty.
Moreover, the inter-model uncertainty interacts with other sources of uncertainty. Sugiyama et al. (2019) conducted an initial assessment of inter-model uncertainty, but did not fully consider other types of uncertainty, including policy stringency, technological availability, service demand reduction, and import prices. To address these issues, the present study conducts a multi-model assessment of Japan’s long-term climate policy under varying future scenarios.