Skip to main content
Log in

Developing conceptual understanding in ray optics via learning with multiple representations

Förderung von konzeptuellem Verständnis in der Strahlenoptik via Lernen mit multiplen Repräsentationen

  • Schwerpunkt
  • Published:
Zeitschrift für Erziehungswissenschaft Aims and scope Submit manuscript

Abstract

A particular difficulty in physics learning is the fact that pupils’ “intuitive” concepts are often resistant to instruction. This article reports empirical results from two related studies within an interdisciplinary project of physics education and educational psychology in ray optics. Two different kinds of treatment groups (TG A and TG B), both targeted at widespread pupils’ intuitive concepts (N = 511), were compared with the results of a control group (CG C) learning with conventional tasks (N = 218) provided by a related study II. Pupils in TG A) of study I worked on cognitively activating tasks related to widespread intuitive concepts in ray optics explicitly requiring them to deal with multiple representations. Pupils in the TG B) of study I worked on the same intuitive concepts, but without the cognitively activating representational component. TG A) and B) were compared with each other and with CG C) learning with conventional tasks. The results indicated that tasks addressing widespread intuitive pupils’ concepts improved conceptual understanding significantly more than conventional tasks. There was evidence of a significant intermediate effect showing medium-term stability.

Zusammenfassung

In diesem Artikel werden Forschungsergebnisse aus zwei aufeinander bezogenen Studien unter dem Gesichtspunkt des konzeptuellen Verständnisses in der Strahlenoptik verglichen. Zwei verschiedene Treatmentgruppen einer Studie I, in denen jeweils Schülervorstellungen thematisiert wurden (N = 511),wurden mit einer Kontrollgruppe (KG C) einer zweiten Studie verglichen, in der die Schüler/innen konventionelle Aufgaben bearbeiteten (N = 218). Schüler/innen der TG A) aus Studie I bearbeiteten kognitiv aktivierende Aufgaben, welche verbreitete Schülervorstellungen in der Strahlenoptik thematisierten, wobei sie kognitiv aktiviert wurden sich explizit mit multiplen Repräsentationen zu befassen. Schüler/innen der TG B) aus Studie I setzten sich exakt mit den gleichen Schülervorstellungen auseinander jedoch ohne kognitive Aktivierung in Bezug auf das Lernen mit multiplen Repräsentationen. Beide Gruppen aus Studie I wurden miteinander sowie mit der KG C) aus Studie II verglichen. Die Ergebnisse belegen, dass das Thematisieren von weitverbreiteten Schülervorstellungen im Vergleich zu konventionellen Aufgaben das konzeptuelle Verständnis mittelfristig, signifikant mit mittlerer Effektstärke verbessert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Learners believing in the impetus concept assumed that an object with a constant velocity inherits a property, e.g. a force, which maintains the velocity. Objects slow down by “using up” this property.

  2. Secondary-school track for high achievers regularly leading to an A-level.

  3. Secondary-school track first leading to the General Certificate of Secondary Education (GSCE) in grade 10 that offers qualified pupils to pass the A-Levels after another 3 years of schooling.

  4. The observers A, B and C in Fig. 2 should not be mixed up with the quasi-experimental conditions TG A), TG B) and CG C).

References

  • Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2–3), 131–152.

    Article  Google Scholar 

  • Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183–198.

    Article  Google Scholar 

  • Ainsworth, S. (2008). The educational value of multiple representations when learning complex scientific concepts. In J. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp. 191–208). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Baumert, J., & Kunter, M. (2011). Das Kompetenzmodell von COACTIV [The COACTIV Competence Model]. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Professionelle Kompetenz von Lehrkräften. Ergebnisse des Forschungsprogramms COACTIV (pp. 29–53). Münster: Waxmann.

    Google Scholar 

  • Bortz, J., & Döring, N. (2005). Forschungsmethoden und Evaluation für Human- und Sozialwissenschaftler [Research Methods and Evaluation for Human and Social Scientists] (3rd edition). Heidelberg: Springer.

    Google Scholar 

  • Botzer, G., & Reiner, M. (2005). Imagery in physics learning—From physicists’ practice to intuitive pupils’ understanding. In J. K. Gilbert (Ed.), Visualization in science education (pp. 147–168). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Byrnes, J. P., & Wasik, B. A. (1991). Role of conceptual knowledge in mathematical procedural learning. Developmental Psychology, 27(5), 777–786.

    Article  Google Scholar 

  • Cheng, M., & Gilbert, J. K. (2009). Towards a better utilization of diagrams in research into the use of representative levels in chemical education. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education (pp. 55–73). Dodrecht: Springer.

    Chapter  Google Scholar 

  • Cheng, P. C.-H., & Shipstone, D. M. (2003). Supporting learning and promoting conceptual change with box and AVOW diagrams. Part 1: Representational design and instructional approaches. International Journal of Science Education, 25(2), 193–204.

    Article  Google Scholar 

  • Cox, R. (1999). Representation construction, externalised cognition and individual differences. Learning and Instruction, 9(4), 343–363.

    Article  Google Scholar 

  • Dutke, S. (1994). Mentale Modelle: Konstrukte des Wissens und Verstehens: kognitionspsychologische Grundlagen für die Software-Ergonomie [Mental Models. Constructs of knowledge and understanding]. Göttingen: Verlag für Angewandte Psychologie.

    Google Scholar 

  • Eid, M., Gollwitzer, M., & Schmitt, M. (2011). Statistik und Forschungsmethoden [Statistics and Research Methods] (2nd edition). Weinheim: Beltz.

    Google Scholar 

  • Galili, I., & Hazan, A. (2000). Learners’ knowledge in optics: Interpretation, structure and analysis. International Journal of Science Education, 22(1), 57–88.

    Article  Google Scholar 

  • Gentner, D., & Gentner, D. (1983). Flowing waters or teeming crowds: Mental models of electricity. In D. Gentner & A. L. Stevens (Eds.), In mental models (pp. 99–129). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Gilbert, J. K., & Treagust, D. (Eds.) (2009). Multiple representations in chemical education. Berlin: Springer.

    Google Scholar 

  • Goldberg, F. M., & McDermott, L. C. (1987). An investigation of student understanding of the real image formed by a converging lens or concave mirror. American Journal of Physics, 55, 108–119.

    Article  Google Scholar 

  • Hattie, A. C. (2009). Visible Learning. A synthesis of over 800 meta-analyses relating to achievement. London: Routledge.

    Google Scholar 

  • Hettmannsperger, R. (2015). Lernen mit multiplen Repräsentationen aus Experimenten: Ein Beitrag zum Verstehen physikalischer Konzepte. Wiesbaden: Springer VS.

    Book  Google Scholar 

  • Hiebert, J., & Wearne, D. (1993). Instructional Tasks, Classroom Discourse, and Pupils’ Learning in Second–Grade Arithmetic. American Educational Research Journal, 30(2), 393–425.

    Article  Google Scholar 

  • Hox, J. J. (2010). Multilevel analysis (2nd edition). London: Routledge. Academic.

    Google Scholar 

  • Hubber, P., Tytler, R., & Haslam, F. (2010). Teaching and Learning about Force with a Representational Focus: Pedagogy and Teacher Change. Research in Science Education, 40, 5–28.

    Article  Google Scholar 

  • Kim, E., & Pak, S.-J. (2002). Students do not overcome conceptual difficulties after solving 1000 traditional problems. American Journal of Physics, 70(7), 759–765.

  • Lee, G., Kwon, J., Park, S. S., Kim, J. W., Kwon, H. G., & Park, H. K. (2003). Development of an instrument for measuring cognitive conflict in secondary-level science classes. Journal of Research in Science Teaching, 40, 585–603.

    Article  Google Scholar 

  • Leisen, J. (1998). Förderung des Sprachlernens durch den Wechsel von Symbolisierungsformen im Physikunterricht [Fostering language learning by changing the format of symbolisation in physics classrooms]. Praxis der Naturwissenschaften Physik, 47(2), 9–13.

    Google Scholar 

  • Limón, M. (2001). On the cognitive conflict as an instructional strategy for conceptual change: A critical appraisal. Learning and Instruction, 11, 357–380.

    Article  Google Scholar 

  • Lipowsky, F. (2009). Unterricht. In E. Wild (Ed.), Pädagogische Psychologie [Educational Psychology] (1st edition, pp. 73–102). Berlin: Springer.

    Chapter  Google Scholar 

  • Mortimer, E. F., & Buty, C. (2009). What does “In the Infinite” Mean? The difficulties with dealing with the representation of the “Infinite” in a teaching sequence on optics. In C. Andersen, N. Scheuer, M. D. P. Pérez Echeverría, & E. Teubal (Eds.), Representational systems and practices as learning tools (pp. 225–242). Rotterdam: Sense Publishers.

    Google Scholar 

  • Özdemir, G., & Clark, D. B. (2007). An overview of conceptual change theories. Eurasia Journal of Mathematics, Science & Technology Education, 3(4), 351–361.

    Google Scholar 

  • Pinheiro, J., & Bates, D. M. (2013). nlme [Computer Software]: The R Project for Statistical Computing. http://cran.r-project.org/web/packages/nlme/nlme.pdf. Accessed 17. Sept 2011.

  • Plötzner, R., & Spada, H. (1998). Inhalt, Struktur und Anwendung von Physikwissen: Eine psychologische Perspektive [Content. Structure and Application of Physics Knowledge: A Psychological Perspective]. Zeitschrift für Didaktik der Naturwissenschaften, 4(2), 81–100.

    Google Scholar 

  • Reiner, M., Slotta, J. D., Chi, M. T. H., & Resnick, L. B. (2000). Intuitive physics reasoning: A commitment to substance–Based conceptions. Cognition and Instruction, 18, 1–34.

    Article  Google Scholar 

  • Scheid, J. (2013). Multiple Repräsentationen, Verständnis physikalischer Experimente und kognitive Aktivierung: Ein Beitrag zur Entwicklung der Aufgabenkultur. In H. Niedderer, H. Fischler, & E. Sumfleht (Eds.), Studien zum Physik- und Chemielernen (Vol. 151). Berlin: Logos Verlag.

    Google Scholar 

  • Schnotz, W. (2005). An integrated model of text and picture comprehension. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 49–69). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Schnotz, W. (2006). Conceptual Change. In D. H. Rost (Ed.), Handwörterbuch pädagogische Psychologie (3rd edition, pp. 75–81). Weinheim: Beltz.

    Google Scholar 

  • Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13(2), 141–156.

    Article  Google Scholar 

  • Sell, K. S., Herbert, B. E., Stuessy, C. L., & Schielack, J. (2006). Supporting student conceptual model development of complex earth system through the use of multiple representations and inquiry. Journal of Geoscience Education, 54(3), 396–407.

    Google Scholar 

  • Shayer, M., & Adhami, M. (2007). Fostering cognitive development through the context of mathematics: Results of the came project. Educational Studies in Mathematics, 64(3), 265–291.

    Article  Google Scholar 

  • Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity to think and reason: An analysis of the relationship between teaching and learning in a reform mathematics project. Educational Research and Evaluation, 2(1), 50–80.

    Article  Google Scholar 

  • Taber, K. (2009). Learning at the symbolic level. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education (pp. 75–105). Dodrecht: Springer.

    Chapter  Google Scholar 

  • Thagard, P. (1991). Concepts and conceptual change (reprint of 1990 paper). In J. Fetzer (Ed.), Epistemology and cognition (pp. 101–120). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Tsui, C., & Treagust, D. (2013). Multiple representations in biological education. Dordrecht: Springer.

    Google Scholar 

  • Tymms, P. (2004). Effect sizes in multilevel models. In I. Schagen & K. Elliot (Eds.), But what does it mean? The use of effect sizes in educational research (pp. 55–66). University of London: Institute of Education.

    Google Scholar 

  • Vosniadou, S. (2013). Reframing the classical approach to conceptual change: Preconceptions, misconceptions and synthetic models. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education. Berlin: Springer.

    Google Scholar 

  • Waldrip, B., Prain, V., & Carolan, J. (2010). Using multi-modal representations to improve learning in junior secondary science. Research in Science Education, 40, 65–80.

    Article  Google Scholar 

  • Wiesner, H. (1992). Schülervorstellungen und Lernschwierigkeiten mit dem Spiegelbild [Pupil Preconceptions and Learning Difficulties Regarding Mirror Imaging]. Naturwissenschaften im Unterricht—Physik, 3, 16–18.

    Google Scholar 

  • Wilhelm, T. (2005). Konzeption und Evaluation eines Kinematik/Dynamik-Lehrgangs zur Veränderung von Schülervorstellungen mit Hilfe dynamisch ikonischer Repräsentationen und graphischer Modellbildung [Conceptualization and Evaluation of a Kinematics/Dynamics Course for Changing Pupil Preconceptions with the Help of Dynamically Iconic Representations and Graphical Model Construction] (Doctoral dissertation). Julius-Maximilians-Universität Würzburg, Germany.

  • Zimrot, R., & Ashkenazi, G. (2007). Interactive lecture demonstrations: A tool for exploring and enhancing conceptual change. Chemistry Education Research and Practice, 8(2), 197–211.

    Article  Google Scholar 

Download references

Acknowledgments

Support by Amanda Habbershaw and Rebecca Cors for proofreading the final English version of the manuscript is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Hettmannsperger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hettmannsperger, R., Mueller, A., Scheid, J. et al. Developing conceptual understanding in ray optics via learning with multiple representations. Z Erziehungswiss 19, 235–255 (2016). https://doi.org/10.1007/s11618-015-0655-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11618-015-0655-1

Keywords

Schlüsselwörter

Navigation