This is a secondary analysis of data from the previously published Cochrane systematic review of audit and feedback. Complete methodological details are available3 and are summarized below. Ethics approval was not required for this study.
Eligibility Criteria
Audit and feedback was defined as a “summary of clinical performance of health care over a specified period of time.” This secondary analysis only included RCTs that directly compared audit and feedback (either alone or as the core, essential feature of a multifaceted intervention) to usual care. Furthermore, only RCTs that evaluated effects on provider practice as a primary outcome were included. For ease of interpretation of the meta-regression and cumulative meta-analysis, we further limited studies to those that reported dichotomous outcomes (i.e., compliance with intended professional practice).
Information Sources, Search, and Study Selection
A search strategy sensitive for RCTs involving audit and feedback was applied in December 2010 to the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, and CINAHL. As previously described,3 we developed a MEDLINE search strategy that identified 89 % of all MEDLINE indexed studies from the previous version of the review and then translated this strategy into the other databases using the appropriate controlled vocabulary as applicable. Search terms included: audit, benchmarking, feedback, utilization review, health care quality, etcetera, plus typical search terms to focus on RCTs. Two reviewers independently screened the titles, abstracts, and full texts to apply inclusion criteria.
Data Collection Process
Two reviewers independently abstracted data from included studies. Studies included in the previous version of the Cochrane review of audit and feedback were reassessed due to changes in the data abstraction form and methods. Discrepancies were resolved through discussion. For studies lacking extractable data or without baseline information, we contacted investigators via email. Risk of bias for the primary outcome(s) in each study was assessed according to the Cochrane Effective Practice and Organization of Care group criteria10 (sequence generation, allocation concealment, blinding, incomplete outcome data, selective reporting, baseline similarity, lack of contamination, and other). We assigned an overall assessment of the risk of bias for each study as high, moderate, or low, following the recommendations in the Cochrane Handbook.11 Studies with a high risk of bias in at least one domain that decreased the certainty of the effect size of the primary outcome were considered to have a high risk of bias. Conversely, when a study had low risk of bias for each domain, it was deemed low risk of bias overall. Other studies were considered to have unclear risk of bias.
Measure of Treatment Effect
We only extracted results for the primary outcome. When the primary outcome was not specified, we used the variable described in the sample size calculation as the primary outcome. When the primary outcome was still unclear or when the manuscript described several primary process outcomes, we calculated the median value. We calculated the treatment effect as an adjusted risk difference (RD) by subtracting baseline differences from post-intervention differences. Thus, an adjusted RD of +10 % indicates that after accounting for baseline differences, health professionals receiving the intervention adhered to the desired practice 10 % more often than those not receiving the intervention.
Analysis
Across multiple studies, we weighted the median effect by the number of health care providers. The ‘median of medians’ technique has been used in many similar reviews evaluating the effect of QI interventions on health professional performance,12 due to frequency of unit of analysis errors in the literature and the great variety of clinical contexts covered in the studies. For the cumulative analysis, the median adjusted RD and interquartile range (IQR) was recalculated at each time point as studies were added. The meta-regression examined how the adjusted RD was related to explanatory variables, weighted according to study size (number of health care professionals). Unlike the meta-regression from the Cochrane review of audit and feedback,3 high risk of bias studies were included. The meta-regression also tested the following potential sources of heterogeneity to explain variation in the results of the included studies: format (verbal, written, both, unclear); source (supervisor or senior colleague, professional standards review organization or representative of employer/purchaser, investigators, unclear); frequency (weekly, monthly, less than monthly, one-time); instruction for improvement (explicit measurable target or specific goal but no action plan, action plan with suggestions or advice given to help participants improve but no goal/target, both, neither); direction of change required (increase current behavior, decrease current behavior, mix or unclear); recipient (physician, other health professional); and study risk of bias (high, unclear, low). Meta-regression was conducted for all published trials as of 2010, 2006 and 2002. Finally, we added year of publication as a continuous variable to the meta-regression of all studies as an additional approach to assess whether this variable accounted for a significant portion of the heterogeneity. We conducted a multivariable linear regression using main effects only. Baseline compliance and year of publication were treated as continuous explanatory variables and the others as categorical. The analyses were conducted using the GLIMMIX procedure in SAS Version 9.2 (SAS Institute Inc. Cary, NC USA), accounting for the dependency between comparisons from the same trial.