Skip to main content

Advertisement

Log in

Remote effects in the ipsilateral thalamus and/or contralateral cerebellar hemisphere using FDG PET in patients with brain tumors

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate reduced metabolism in the ipsilateral thalamus (TH) and/or contralateral cerebellum (CE) according to tumor localization and cortical metabolism around the tumor in patients with brain tumors based on FDG uptake.

Methods

This study investigated 48 consecutive patients with solitary cerebral hemisphere parenchymal brain tumors who underwent PET/CT and MRI. Patients were divided into 4 groups (A: reduced uptake in ipsilateral TH and contralateral CE, B: reduced uptake in ipsilateral TH only, C: reduced uptake in contralateral CE only, and D: no reduced uptake in ipsilateral TH or contralateral CE). FDG uptake and MRI findings were compared among these groups.

Results

Of 48 patients, group A included 24 (50%), group B included 10 (21%), group C included 0, and group D included 14 (29%). No significant tendencies were observed between the groups regarding tumor localization. However, reduced cortical metabolism around the tumor was observed in 22 patients in group A, 7 patients in group B, and 1 patient in group D. All patients in group B showed reduced metabolism from around the tumor up to the ipsilateral TH.

Conclusion

Reduced FDG uptake in ipsilateral TH and contralateral CE usually occur simultaneously in patients with solitary brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feeney DM, Baron JC. Diaschisis. Stroke. 1986;17:817–30.

    Article  CAS  PubMed  Google Scholar 

  2. Baron JC, Bousser MG, Comar D, Castaigne P. Crossed cerebellar diaschisis” in human supratentorial brain infarction. Trans Am Neurol Assoc. 1981;105:459–61.

    CAS  PubMed  Google Scholar 

  3. Kuhl DE, Phelps ME, Kowell AP, Metter EJ, Selin C, Winter J. Effects of stroke on local cerebral metabolism and perfusion: mapping by emission computed tomography of 18FDG and 13NH3. Ann Neurol. 1980;8:47–60.

    Article  CAS  PubMed  Google Scholar 

  4. Fujie W, Kirino T, Tomukai N, Iwasawa T, Tamura A. Progressive shrinkage of the thalamus following middle cerebral artery occlusion in rats. Stroke. 1990;21:1485–8.

    Article  CAS  PubMed  Google Scholar 

  5. Iizuka H, Sakatani K, Young W. Neural damage in the rat thalamus after cortical infarcts. Stroke. 1990;21:790–4.

    Article  CAS  PubMed  Google Scholar 

  6. Nagasawa H, Kogure K. Exo-focal postischemic neuronal death in the rat brain. Brain Res. 1990;524:196–202.

    Article  CAS  PubMed  Google Scholar 

  7. Tamura A, Kirino T, Sano K, Takagi K, Oka H. Atrophy of the ipsilateral substantia nigra following middle cerebral artery occlusion in the rat. Brain Res. 1990;510:154–7.

    Article  CAS  PubMed  Google Scholar 

  8. Kataoka K, Hayakawa T, Yamada K, Mushiroi T, Kuroda R, Mogami H. Neuronal network disturbance after focal ischemia in rats. Stroke. 1989;20:1226–35.

    Article  CAS  PubMed  Google Scholar 

  9. Nagasawa H, Kogure K, Fujiwara T, Itoh M, Ido T. Metabolic disturbances in exo-focal brain areas after cortical stroke studied by positron emission tomography. J Neurol Sci. 1994;123:147–53.

    Article  CAS  PubMed  Google Scholar 

  10. Ogawa T, Yoshida Y, Okudera T, Noguchi K, Kado H, Uemura K. Secondary thalamic degeneration after cerebral infarction in the middle cerebral artery distribution: evaluation with MR imaging. Radiology. 1997;204:255–62.

    Article  CAS  PubMed  Google Scholar 

  11. Patronas NJ, Di Chiro G, Smith BH, De La Paz R, Brooks RA, Milam HL, et al. Depressed cerebellar glucose metabolism in supratentorial tumors. Brain Res. 1984;291:93–101.

    Article  CAS  PubMed  Google Scholar 

  12. Calabria F, Schillaci O. Recurrent glioma and crossed cerebellar diaschisis in a patient examined with 18F-DOPA and 18F-FDG PET/CT. Clin Nucl Med. 2012;37:878–9.

    Article  PubMed  Google Scholar 

  13. Kajimoto K, Oku N, Kimura Y, Kato H, Tanaka MR, Kanai Y, et al. Crossed cerebellar diaschisis: a positron emission tomography study with L-[methyl-11C]methionine and 2-deoxy-2-[18F]fluoro-D-glucose. Ann Nucl Med. 2007;21:109–13.

    Article  CAS  PubMed  Google Scholar 

  14. Teoh EJ, Green AL, Bradley KM. Crossed cerebellar diaschisis due to cerebral diffuse large B cell lymphoma on 18F-FDG PET/CT. Int J Hematol. 2014;100:415–6.

    Article  PubMed  Google Scholar 

  15. Otte A, Roelcke U, von Ammon K, Hausmann O, Maguire RP, Missimer J, et al. Crossed cerebellar diaschisis and brain tumor biochemistry studied with positron emission tomography, [18F]fluorodeoxyglucose and [11C]methionine. J Neurol Sci. 1998;156:73–7.

    Article  CAS  PubMed  Google Scholar 

  16. Han S, Wang X, Xu K, Hu C. Crossed cerebellar diaschisis: three case reports imaging using a tri-modality PET/CT-MR system. Medicine. 2016;95:e2526.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

    Article  CAS  PubMed  Google Scholar 

  18. Israel O, Delbeke D. Normal distribution, variants, pitfalls, and artifacts. In: Delbeke D, Israel O, editors. Hybrid PET/CT and SPECT/CT imaging. New York: Springer Science + Business; 2010. p. 35–96.

    Chapter  Google Scholar 

  19. Brodal A. Cerebrocerebellar pathways. Anatomical data and some functional implications. Acta Neurol Scand Suppl. 1972;51:153–95.

    CAS  PubMed  Google Scholar 

  20. Kang KM, Sohn CH, Kim BS, Kim YI, Choi SH, Yun TJ, et al. Correlation of asymmetry indices measured by arterial spin-labeling MR imaging and SPECT in patients with crossed cerebellar diaschisis. Am J Neuroradiol. 2015;36:1662–8.

    Article  CAS  PubMed  Google Scholar 

  21. Pantano P, Baron JC, Samson Y, Bousser MG, Derouesne C, Comar D. Crossed cerebellar diaschisis. Further studies. Brain. 1986;109:677–94.

    Article  PubMed  Google Scholar 

  22. Kushner M, Alavi A, Reivich M, Dann R, Burke A, Robinson G. Contralateral cerebellar hypometabolism following cerebral insult: a positron emission tomographic study. Ann Neurol. 1984;15:425–34.

    Article  CAS  PubMed  Google Scholar 

  23. Flint AC, Naley MC, Wright CB. Ataxic hemiparesis from strategic frontal white matter infarction with crossed cerebellar diaschisis. Stroke. 2006;37:e1–2.

    Article  PubMed  Google Scholar 

  24. Infeld B, Davis SM, Lichtenstein M, Mitchell PJ, Hopper JL. Crossed cerebellar diaschisis and brain recovery after stroke. Stroke. 1995;26:90–5.

    Article  CAS  PubMed  Google Scholar 

  25. Miyazawa N, Toyama K, Arbab AS, Koizumi K, Arai T, Nukui H. Evaluation of crossed cerebellar diaschisis in 30 patients with major cerebral artery occlusion by means of quantitative I-123 IMP SPECT. Ann Nucl Med. 2001;15:513–9.

    Article  CAS  PubMed  Google Scholar 

  26. Komaba Y, Mishina M, Utsumi K, Katayama Y, Kobayashi S, Mori O. Crossed cerebellar diaschisis in patients with cortical infarction: logistic regression analysis to control for confounding effects. Stroke. 2004;35:472–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitomi Iwasa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwasa, H., Murata, Y., Nishimori, M. et al. Remote effects in the ipsilateral thalamus and/or contralateral cerebellar hemisphere using FDG PET in patients with brain tumors. Jpn J Radiol 36, 303–311 (2018). https://doi.org/10.1007/s11604-018-0721-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-018-0721-8

Keywords

Navigation