Skip to main content

Advertisement

Log in

Concurrent functional and metabolic assessment of brain tumors using hybrid PET/MR imaging

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

To evaluate diagnostic accuracy of perfusion weighted imaging (PWI) and positron emission tomography (PET) using an integrated PET/MR system in tumor grading as well as in differentiating recurrent tumor from treatment-induced effects (TIE) in brain tumor patients. Twenty patients (Group A: treatment naïve, 9 patients with 16 lesions; Group B: post-therapy, 11 patients with 18 lesions) underwent fluorine 18 (18F) fluorodeoxyglucose (FDG) brain PET/MR with PWI. Two blinded readers predicted low versus high-grade tumor (for Group A) and tumor recurrence versus TIE (for Group B) based solely on tumor rCBV (regional cerebral blood volume) and SUV (standardized uptake values). Tumor histopathology at resection was the reference standard. Using rCBVmean ≤ 1.74 as a cut-off, 100 % sensitivity and 74 % specificity were observed, whereas 75 % sensitivity and 89.7 % specificity were observed with SUVmean ≤ 4.0 as a cut-off to classify patients as test positive for low-grade tumors (Group A) and TIE (Group B). Diagnostic accuracy for detection of low-grade tumors was 90 % using PWI and 40 % using PET in Group A (p = 0.056); for detection of TIE in Group B, diagnostic accuracy was 94.1 % using PWI and 55.6 % using PET (p = 0.033). No significant correlation was demonstrated between rCBV parameters and SUV in Group A (mean values: p > 0.403), Group B (p > 0.06) and in the entire population (p > 0.07). Best overall sensitivity and specificity were obtained using rCBVmean ≤ 1.74 and SUVmean ≤ 4.0 cut-off values. PWI demonstrated better diagnostic accuracy in both groups. Poor correlation was observed between FDG and rCBV parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Griffith B, Jain R (2015) Perfusion imaging in neuro-oncology: basic techniques and clinical applications. Radiol Clin North Am 53(3):497–511

    Article  PubMed  Google Scholar 

  2. Partovi S, Kohan A, Rubbert C et al (2014) Clinical oncologic applications of PET/MRI: a new horizon. Am J Nucl Med Mol Imaging 4(2):202–212

    PubMed  PubMed Central  Google Scholar 

  3. Segtnan EA, Hess S, Grupe P et al (2015) 18F-fluorodeoxyglucose PET/computed tomography for primary brain tumors. PET Clin 10(1):59–73

    Article  PubMed  Google Scholar 

  4. Demetriades AK, Almeida AC (2014) Bhangoo RS Applications of positron emission tomography in neuro-oncology: a clinical approach. Surgeon 12(3):148–157

    Article  PubMed  Google Scholar 

  5. Wong TZ, van der Westhuizen GJ, Coleman RE (2002) Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am 12(4):615–626

    Article  PubMed  Google Scholar 

  6. Tian J, Fu L, Yin D et al (2014) Does the novel integrated PET/MRI Offer the same diagnostic performance as PET/CT for oncological indications? Plos One 9(6):e90844

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hofmann M, Pichler B, Scholkopf B et al (2009) Towards quantitative PET/MRI: a review of MR-baed attenuation correction techniques. Eur J Nucl Med Mol Imaging 36:S93–S104

    Article  PubMed  Google Scholar 

  8. Keller SH, Holm S, Hansen AE et al (2013) Image artifacts from MR-based attenuation correction in clinical, whole body PET/MRI. MAGMA 39:1519–1524

    Google Scholar 

  9. Filss CP, Galldiks N, Stoffels G et al (2014) Comparison of 18F-FET PET and perfusion-weighted MR imaging: a PET/MR imaging hybrid study in patients with brain tumors. J Nucl Med 55(4):540–545

    Article  CAS  PubMed  Google Scholar 

  10. Kim YH, Oh SW, Lim YJ et al (2010) Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of 18F-FDG PET, 11C-methionine PET and perfusion MRI. Clin Neurol Neurosurg 112(9):758–765

    Article  PubMed  Google Scholar 

  11. Hatzoglou V, Ulaner GA, Zhang Z, Beal K, Holodny AI, Young RJ (2013) Comparison of the effectiveness of MRI perfusion and fluorine-18 FDG PET-CT for differentiating radiation injury from viable brain tumor: a preliminary retrospective analysis with pathologic correlation in all patients. Clin Imaging 37(3):451–457

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aronen HJ, Gazit IE et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191(1):41–51

    Article  CAS  PubMed  Google Scholar 

  13. Knopp EA, Cha S, Johnson G (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211(3):791–798

    Article  CAS  PubMed  Google Scholar 

  14. Sugahara T, Korogi Y, Kochi M (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171(6):1479–1486

    Article  CAS  PubMed  Google Scholar 

  15. Arvinda HR, Kesavadas C, Sarma ps (2009) Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neurooncol 94(1):87–96

    Article  CAS  PubMed  Google Scholar 

  16. Sugahara T, Korogi Y, Tomiguchi S (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 21(5):901–909

    CAS  PubMed  Google Scholar 

  17. Forsyth PA, Kelly PJ, Cascino TL (1995) Radiation necrosis or glioma recurrence: is computer-assisted stereotactic biopsy useful? J Neurosurg 82(3):436–444

    Article  CAS  PubMed  Google Scholar 

  18. Prat R, Galeano I, Lucas A, Martínez JC, Martín M, Amador R, Reynés G (2010) Relative value of magnetic resonance spectroscopy, magnetic resonance perfusion, and 2-(18F) fluoro-2-deoxy-d-glucose positron emission tomography for detection of recurrence or grade increase in gliomas. J Clin Neurosci 17(1):50–53

    Article  CAS  PubMed  Google Scholar 

  19. Herholz K, Langen KJ, Schiepers C, Mountz JM (2012) Brain tumors. Semin Nucl Med 42:356–370

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dunet V, Pomoni A, Hottinger A, Nicod-Lalonde M, Prior JO (2015) Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro Oncol. doi:10.1093/neuonc/nov148

  21. Li Z, Yu Y, Zhang H, Xu G, Chen L (2015) A meta-analysis comparing 18F-FLT PET with 18F-FDG PET for assessment of brain tumor recurrence. Nucl Med Commun 36(7):695–701

    Article  PubMed  Google Scholar 

  22. Dankbaar JW, Snijders TJ, Robe PA, Seute T, Eppinga W, Hendrikse J, De Keizer B (2015) The use of (18)F-FDG PET to differentiate progressive disease from treatment induced necrosis in high gradeglioma. J Neurooncol 125(1):167–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barajas RF Jr, Phillips JJ, Parvataneni R et al (2012) Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging. Neuro Oncol 14(7):942–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maia AC Jr, Malheiros SM, da Rocha AJ et al (2005) MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. AJNR Am J Neuroradiol 26(4):777–783

    PubMed  Google Scholar 

  25. Sadeghi N, D’Haene N, Decaestecker C et al (2008) Apparent diffusion coefficient and cerebral blood volume in brain gliomas: relation to tumor cell density and tumor microvessel density based on stereotactic biopsies. AJNR Am J Neuroradiol 29(3):476–482 Epub 2007 Dec 13

    Article  CAS  PubMed  Google Scholar 

  26. Galbán CJ, Chenevert TL, Meyer CR et al (2011) Prospective analysis of parametric response map-derived MRI biomarkers: identification of early and distinct glioma response patterns not predicted by standard radiographic assessment. Clin Cancer Res 17(14):4751–4760

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tsien C, Galbán CJ, Chenevert TL (2010) Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma. J Clin Oncol 28(13):2293–2299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dhermain FG, Hau P, Lanfermann H et al (2010) Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol 9:906–920

    Article  PubMed  Google Scholar 

  29. Zukotynski KA, Fahey FH, Vajapeyam S et al (2013) Exploratory evaluation of MR permeability with 18F-FDG PET mapping in pediatric brain tumors: a report from the pediatric brain tumor consortium. J Nucl Med 54:1237–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ozsunar Y, Mullins ME, Kwong K et al (2010) Glioma recurrence versus radiation necrosis? A pilot comparison of arterial spin-labeled, dynamic susceptibility contrast enhanced MRI, and FDG-PET imaging. Acad Radiol 17:282–290

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Work principally supported by CAI2R and/or performed by CAI2R personnel. The Center for Advanced Imaging Innovation and Research (CAI2R, www.cai2r.net) at New York University School of Medicine is supported by NIH/NIBIB Grant number P41 EB017183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jain.

Ethics declarations

Conflict of interest

No conflict of interest pertaining to the subject matter of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacconi, B., Raad, R.A., Lee, J. et al. Concurrent functional and metabolic assessment of brain tumors using hybrid PET/MR imaging. J Neurooncol 127, 287–293 (2016). https://doi.org/10.1007/s11060-015-2032-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-2032-6

Keywords

Navigation