Skip to main content
Log in

An analysis and comparison of automated methods for determining the regularization parameter in the three-dimensional inversion of gravity data

  • Research Article - Applied Geophysics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The processing of potential field datasets requires many steps; one of them is the inverse modeling of potential field data. Using a measurement dataset, the purpose is to evaluate the physical and geometric properties of an unidentified model in the subsurface. Because of the ill-posedness of the inverse problem, the determination of an acceptable solution requires the imposition of a regularization term to stabilize the inversion process. We also need a regularization parameter that determines the comparative weights of the stabilization and data fit terms. This work offers an evaluation of automated strategies for the estimation of the regularization parameter for underdetermined linear inverse problems. We look at the methods of generalized cross validation, active constraint balancing (ACB), the discrepancy principle, and the unbiased predictive risk estimator. It has been shown that the ACB technique is superior by applying the algorithms to both synthetic data and field data, which produces density models that are representative of real structures and demonstrate the method’s supremacy. Data acquired over the chromite deposit in Camaguey, Cuba, are utilized to corroborate the procedures for the inversion of experimental data. The findings gathered from the three-dimensional inversion of gravity data from this region demonstrate that the ACB approach gives appropriate estimations of anomalous density structures and depth resolution inside the subsurface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Garni MA (2013) Inversion of residual gravity anomalies using neural network. Arab J Geosci 6:1509–1516

    Article  Google Scholar 

  • Alumbaugh DL, Newman GA (2000) Image appraisal for 2-D and 3-D electromagnetic inversion. Geophysics 65:1455–1467

    Article  Google Scholar 

  • Asfahani J, Tlas M (2008) An automatic method of direct interpretation of residual gravity anomaly profiles due to spheres and cylinders. Pure Appl Geophys 165:981–994

    Article  Google Scholar 

  • Asfahani J, Tlas M (2012) Fair function minimization for direct interpretation of residual gravity anomaly profiles due to spheres and cylinders. Pure Appl Geophys 169:157–165

    Article  Google Scholar 

  • Aster RC, Borchers B, Thurber CH (2011) Parameter estimation and inverse problems, vol 90. Academic Press

    Google Scholar 

  • Barbosa VCF, Silva JBC, Medeiros WE (1997) Gravity inversion of basement relief using approximate equality constraints on depths. Geophysics 62(6):1745–1757

    Article  Google Scholar 

  • Bear GW, Al-Shukri HJ, Rudman AJ (1995) Linear inversion of gravity data for 3D density distributions. Geophysics 60:1354–1364. https://doi.org/10.1190/1.1443871

    Article  Google Scholar 

  • Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press

    Book  Google Scholar 

  • Boulanger O, Chouteau M (2001) Constraints in 3D gravity inversion. Geophys Prospect 49:265–280. https://doi.org/10.1046/j.1365-24782001.00254.x

    Article  Google Scholar 

  • Cai H, Zhdanov MS (2014) Modeling and inversion of magnetic anomalies caused by sediment basement interface using three-dimensional Cauchy-type integrals. IEEE Geosci Remote Sens Lett 12(3):477–481

    Article  Google Scholar 

  • Camacho AG, Montesinos FG, Vieira R (2000) Gravity inversion by means of growing bodies. Geophysics 65:95–101

    Article  Google Scholar 

  • Chai Y, Hinze WJ (1988) Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics 53:837–845

    Article  Google Scholar 

  • Chakravarthi V, Sundararajan N (2007) 3D gravity inversion of basement relief—a depth dependent density approach. Geophysics 72:I23–I32

    Article  Google Scholar 

  • Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52:289–300

    Article  Google Scholar 

  • Davis WE, Jackson WH, Richter DH (1957) Gravity prospecting for chromite deposits in Camaguey province Cuba. Geophys 22(4):848–869

    Article  Google Scholar 

  • De Groot-Hedlin C, Constable SC (1990) Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55:1613–1624

    Article  Google Scholar 

  • Dobrin MB (1960) Introduction to geophysical prospecting. McGraw-Hill

    Google Scholar 

  • Ekinci YL (2008) 2D focusing inversion of gravity data with the use of parameter variation as a stopping criterion. J Balk Geophys Soc 11(1):1–9

    Google Scholar 

  • Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems, vol 375. Kluwer, Dordrecht, p 333

    Book  Google Scholar 

  • Eshagh M (2009) On satellite gravity gradiometry (Doctoral dissertation, KTH)

  • Farquharson CG, Oldenburg DW (1993) Inversion of time-domain electromagnetic data for a horizontally layered Earth. Geophys J Int 114:433–442

    Article  Google Scholar 

  • Farquharson CG, Oldenburg DW (2004) A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems. Geophys J Int 156:411–425

    Article  Google Scholar 

  • Fedi M, Rapolla A (1999) 3-D inversion of gravity and magnetic data with depth resolution. Geophysics 64(2):452–460

    Article  Google Scholar 

  • Feng J, Meng X, Chen Z, Zhang S (2014) Three-dimensional density interface inversion of gravity anomalies in the spectral domain. J Geophys Eng 11:035001

    Article  Google Scholar 

  • Foks NL, Krahenbuhl R, Li Y (2014) Adaptive sampling of potential-field data: a direct approach to compressive inversion. Geophysics 79(1):1–9

    Article  Google Scholar 

  • Gallardo LA, Perez-Flores MA, Gomez-Trevino E (2005) Refinement of three-dimensional multilayer models of basins and crustal environments by inversion of gravity and magnetic data. Tectonophysics 397:37–54

    Article  Google Scholar 

  • Golub GH, Von Matt U (1997) Generalized cross-validation for large scale problems. J Comput Graph Stat 6:1–34

    Google Scholar 

  • Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21:215–223

    Article  Google Scholar 

  • Guspi F (1992) Three-dimensional Fourier gravity inversion with arbitrary density contrast. Geophysics 57:131–135

    Article  Google Scholar 

  • Haber E, Oldenburg DW (2000) A GCV based method for nonlinear ill-posed problems. Comput Geosci 4:41–63

    Article  Google Scholar 

  • Hammer S (1945) Estimating ore masses in gravity prospecting. Geophysics 10(1):50–62

    Article  Google Scholar 

  • Hansen PC (1997) Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. SIAM, Philadelphia

    Google Scholar 

  • Hansen PC (2007) Regularization tools: a matlab package for analysis and solution of discrete ill-posed problems version 4.1 for matlab 7.3. Numer Algorithms 46:189–194

    Article  Google Scholar 

  • Henderson RG, Zietz I (1949) The computation of second vertical derivatives of geomagnetic fields. Geophysics 14(4):508–516

    Article  Google Scholar 

  • Hinze WJ (1990) The role of gravity and magnetic methods in engineering and environmental studies. In: Ward SH (ed) Geotechnical an environmental geophysics: Volume I: Review and tutorial. Society of Exploration Geophysicists, pp 75–126

  • Hinze WJ, Von Frese RRB, Saad AH (2013) Gravity and magnetic exploration. Cambridge University Press

    Google Scholar 

  • Hutchinson MF (1990) A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun Stat Simul Comput 19:443

    Article  Google Scholar 

  • Jacoby W, Smilde PL (2009) Gravity interpretation fundamentals and application of gravity inversion and geological interpretation. Springer

    Google Scholar 

  • Jupp DL, Vozoff K (1975) Stable iterative methods for the inversion of geophysical data. Geophys J R Astron Soc 42:67–72

    Google Scholar 

  • Last B, Kubik K (1983) Compact gravity inversion. Geophysics 48:713–721

    Article  Google Scholar 

  • Lee SK, Kim HJ, Song Y, Lee CK (2009) MT2DInvMatlab—A program in MATLAB and FORTRAN for two-dimensional magnetotelluric inversion. Comput Geosci 35(8):1722–1734

    Article  Google Scholar 

  • Lelievre PG, Oldenburg DW (2006) Magnetic forward modeling and inversion for high susceptibility. Geophys J Int 166(1):76–90

    Article  Google Scholar 

  • Li YG, Oldenburg DW (1996) 3-D inversion of magnetic data. Geophysics 61:394–408

    Article  Google Scholar 

  • Li YG, Oldenburg DW (1998) 3-D inversion of gravity data. Geophysics 63:109–119

    Article  Google Scholar 

  • Li Y, Oldenburg DW (2003) Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophys J Int 152(2):251–265

    Article  Google Scholar 

  • Li H, Xu S, Yu H et al (2010) Transformations between aeromagnetic gradients in frequency domain. J Earth Sci 21(1):114–122

    Article  CAS  Google Scholar 

  • Marquardt DW (1970) Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 12(3):591–612

    Article  Google Scholar 

  • Mead JL, Renaut RA (2009) A Newton root-finding algorithm for estimating the regularization parameter for solving ill-conditioned least squares problems. Inverse Probl 25:025002

    Article  Google Scholar 

  • Mehanee SA (2014) Accurate and efficient regularized inversion approach for the interpretation of isolated gravity anomalies. Pure Appl Geophys 171:1897–1937

    Article  Google Scholar 

  • Menke W (1989) Geophysical data analysis discrete inverse theory, revised. Academic Press Inc, San Diego, p 289

    Google Scholar 

  • Morozov VA (1966) On the solution of functional equations by the method of regularization. Sov Math Dokl 7:414–417

    Google Scholar 

  • Ndougsa-Mbarga T, Feumoe ANS, Manguelle-Dicoum E, Fairhead JD (2012) Aeromagnetic data interpretation to locate buried faults in South-East Cameroon. Geophysica 48(1):49–63

    Google Scholar 

  • Nemeth T, Normark E, Qin F (1997) Dynamic smoothing in crosswell travel time tomography. Geophysics 62:168–176

    Article  Google Scholar 

  • Nettleton LL (1976) Gravity and magnetics in oil prospecting. McGraw-Hill

    Google Scholar 

  • Oldenburg DW (1974) The inversion and interpretation of gravity anomalies. Geophysics 39:394–408

    Article  Google Scholar 

  • Oldenburg DW, Li Y (2005) Inversion for applied geophysics: a tutorial. In: Butler DK (ed) Near-surface geophysics. Investigations in Geophysics. SEG, US, pp 89–150

    Chapter  Google Scholar 

  • Oliveira VC, Barbosa VCF, Silva JBC (2011) Source geometry estimation using the mass excess criterion to constrain 3D radial inversion of gravity data. Geophys J Int 187:754–772

    Article  Google Scholar 

  • Paige CC, Saunders MA (1982a) Algorithm 583 LSQR: sparse linear equations and least squares problems. ACM Trans Math Softw 8:195–209

    Article  Google Scholar 

  • Paige CC, Saunders MA (1982b) LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans Math Softw (TOMS) 8(1):43–71

    Article  Google Scholar 

  • Parker RL (1980) The inverse problem of electromagnetic induction: existence and construction of solutions based on incomplete data. J Geophys Res Solid Earth 85:4421–4428

    Article  Google Scholar 

  • Parker RL (1984) The inverse problem of resistivity sounding. Geophysics 49:2143–2158

    Article  Google Scholar 

  • Parker RL (1994) Geophysical inverse theory. Princeton University Press

    Book  Google Scholar 

  • Parker RL, Whaler KA (1981) Numerical methods for establishing solutions to the inverse problem of electromagnetic induction. J Geophys Res Solid Earth 86:9574–9584

    Article  Google Scholar 

  • Paterson NR, Reeves CV (1985) Applications of gravity and magnetic surveys: the state of-the-art in 1985. Geophysics 50:2558–2594

    Article  Google Scholar 

  • Pedersen LB (1977) Interpretation of potential field data: a generalized inverse approach. Geophys Prospect 25:199–230

    Article  Google Scholar 

  • Pilkington M (2008) 3D magnetic data-space inversion with sparseness constraints. Geophysics 74(1):L7–L15

    Article  Google Scholar 

  • Portniaguine O, Zhdanov MS (1999) Focusing geophysical inversion images. Geophysics 64:874–887

    Article  Google Scholar 

  • Reamer SK, Ferguson JF (1989) Regularized two-dimensional Fourier gravity inversion method with application to the Silent Canyon Caldera Nevada. Geophysics 54:486–496

    Article  Google Scholar 

  • Renaut RA, Hnetynkova I, Mead JL (2010) Regularization parameter estimation for large scale Tikhonov regularization using a priori information. Comput Stat Data Anal 54(12):3430–3445

    Article  Google Scholar 

  • Rezaie M (2019) 3D non-smooth inversion of gravity data by zero order minimum entropy stabilizing functional. Phys Earth Planet Inter 294:106275

    Article  Google Scholar 

  • Rezaie M (2021) 3D inversion of magnetic amplitude data with sparseness constraint. Pure Appl Geophys 178(6):2111–2126

    Article  Google Scholar 

  • Rezaie M, Moradzadeh A, Kalateh AN (2017) Fast 3D inversion of gravity data using solution space priorconditioned Lanczos bidiagonalization. J Appl Geophys 136:42–50

    Article  Google Scholar 

  • Robinson ES, Coruh C (1988) Basic exploration geophysics. Wiley, New York

    Google Scholar 

  • Roy L (2001) Short note: source geometry identification by simultaneous use of structural index and shape factor. Geophys Prospect 49:159–164

    Article  Google Scholar 

  • Roy L, Agarwal BNP, Shaw RK (2000) A new concept in Euler deconvolution of isolated gravity anomalies. Geophys Prospect 48:559–575

    Article  Google Scholar 

  • Salem A, Elawadib E, Ushijima K (2003) Depth determination from residual gravity anomaly data using a simple formula. Comput Geosci 29:801–804

    Article  Google Scholar 

  • Santos ETF, Bassrei A (2007) Application of GCV in geophysical diffraction tomography. In: 69th EAGE conference and exhibition, London

  • Sasaki Y (1989) Two-dimensional joint inversion of magnetotelluric and dipole–dipole resistivity data. Geophysics 54:254–262

    Article  Google Scholar 

  • Silva Dias FJ, Barbosa VC, Silva JB (2009) 3D gravity inversion through an adaptive-learning procedure. Geophysics 74(3):I9–I21

    Article  Google Scholar 

  • Smith JT, Bookear JR (1988) Magnetotelluric inversion for minimum structure. Geophysics 53:1565–1576

    Article  Google Scholar 

  • Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics

    Book  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE, Keys DA (1976) Applied geophysics. Cambridge University Press

    Google Scholar 

  • Tikhonov AN (1963) On the solution of ill-posed problems and the method of regularization. Dokl Akad Nauk 151(3):501–504

    Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solution of ill-posed problems. V. H. Winston and Sons

    Google Scholar 

  • Tlas M, Asfahani J, Karmeh H (2005) A versatile nonlinear inversion to interpret gravity anomaly caused by a simple geometrical structure. Pure Appl Geophys 162:2557–2571

    Article  Google Scholar 

  • Uchida T (1993) Smooth 2D inversion for magnetotelluric data based on statistical criterion ABIC. J Geomagn Geoelectr 45:841–858

    Article  Google Scholar 

  • Uieda L, Barbosa VCF (2012) Robust 3D gravity gradient inversion by planting anomalous densities. Geophysics 77(4):G55–G66

    Article  Google Scholar 

  • Vatankhah S, Ardestani VE, Renaut RA (2014a) Automatic estimation of the regularization parameter in 2d focusing gravity inversion: application of the method to the Safo manganese mine in the northwest of Iran. J Geophys Eng 11(4):045001

    Article  Google Scholar 

  • Vatankhah S, Renaut RA, Ardestani VE (2014b) Regularization parameter estimation for underdetermined problems by the χ2 principle with application to 2D focusing gravity inversion. Inverse Probl 30:085002

    Article  Google Scholar 

  • Vogel CR (2002) Computational Methods for inverse problems, frontiers in applied mathematics. SIAM

    Book  Google Scholar 

  • Wahba G (1990) Spline models for observational data, vol 59. SIAM, Philadelphia

    Book  Google Scholar 

  • Ward SH (ed) (1990) Geotechnical and environmental geophysics. Society of Exploration Geophysicists

    Google Scholar 

  • Xu P, Shen Y, Fukuda Y, Liu Y (2006) Variance component estimation in linear inverse ill-posed models. J Geod 80(2):69–81

    Article  Google Scholar 

  • Yang Y, Li Y, Liu T et al (2011) Interactive 3D forward modeling of total field surface and three-component borehole magnetic data for the Daye iron-ore deposit (Central China). J Appl Geophys 75(2):254–263

    Article  Google Scholar 

  • Yi M-J, Kim J-H, Chung S-H (2003) Enhancing the resolving power of least-squares inversion with active constraint balancing. Geophysics 68:931–941

    Article  Google Scholar 

  • Zhao B, Chen Y (2011) Singular value decomposition (SVD) for extraction of gravity anomaly associated with gold mineralization in Tongshi gold field Western Shandong Uplifted Block, Eastern China. Nonlinear Process Geophys 18:103–109

    Article  Google Scholar 

  • Zhdanov MS (2002) Geophysical inverse theory and regularization problems, vol 36. Elsevier

    Book  Google Scholar 

  • Zhdanov MS (2009) New advances in regularized inversion of gravity and electromagnetic data. Geophys Prospect 57:463–478

    Article  Google Scholar 

  • Zhdanov MS, Ellis R, Mukherjee S (2004) Three dimensional regularized focusing inversion of gravity gradient tensor component data. Geophysics 69:925–937

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Professor Rosemary A. Renaut from the School of Mathematical and Statistical Sciences, Arizona State University. At all steps of this research, her recommendations have been very useful to us. We are thankful for the support of the Faculty of Mining, Petroleum and Geophysics Engineering of Shahrood University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nejati Kalateh.

Ethics declarations

Conflict of interest

In this research, with the knowledge of all the authors, ethical standards have been fully observed. Also, all the authors have played an active and important role in every stage of this article, and this work has been submitted to the journal with the informed and complete consent of each author. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Edited by Prof. Ali Gholami (ASSOCIATE EDITOR).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghadasi, M., Nejati Kalateh, A., Rezaie, M. et al. An analysis and comparison of automated methods for determining the regularization parameter in the three-dimensional inversion of gravity data. Acta Geophys. (2024). https://doi.org/10.1007/s11600-023-01135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11600-023-01135-z

Keywords

Navigation