Skip to main content
Log in

Nonextensive statistical mechanics for robust physical parameter estimation: the role of entropic index

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The problem of inferencing parameters of complex systems from measured data has been extensively studied based on the inverse problem theory. Classically, an inverse problem is formulated as an optimisation task in which the objective function is based on the maximisation of Boltzmann–Gibbs entropy under appropriate constraints. In this classical framework, errors are assumed to follow a Gaussian-behaviour. However, in many situations, the errors are non-Gaussian and therefore the classical approach is predestined to failure. To mitigate the inverse-problem sensitivity to non-Gaussian errors, we have considered in this study a q-generalised objective function within the context of nonextensive statistical mechanics. In this regard, the errors are assumed to follow the q-Gaussian distribution, which arises from the maximisation of the nonadditive Tsallis entropy. We study the robustness properties of the q-objective function, which is a generalisation of the classical objective function, through the so-called influence function. In this work, we analyse and discuss from an analytical and numerical perspective, the role of the entropic index (q) of Tsallis entropy on the effectiveness and robustness in the inference of physical parameters from with strongly noisy-data. In this perspective, we show that exists an optimum value for the entropic index at the limit \(q \rightarrow 3\), which implies in \(\delta _q = 3 - q \approx 0\) in the q-objective function. To validate our proposal, we consider a classic geophysical inverse problem by employing a realistic geological model and a data set contaminated by spikes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Razavy, An Introduction to Inverse Problems in Physics (World Scientific Publishing Company, New Jersey, 2012)

    MATH  Google Scholar 

  2. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (SIAM, Philadelphia, 2005)

    Book  MATH  Google Scholar 

  3. W. Menke, Geophysical Data Analysis: Discrete Inverse Theory (Academic Press, New York, 2012)

    MATH  Google Scholar 

  4. J. Hadamard, Princet. Univ. Bull. 13, 49 (1902)

    Google Scholar 

  5. S.I. Kabanikhin, Inverse and Ill-Posed Problems: Theory and Applications, vol. 55 (Walter de Gruyter, Berlin, 2011)

    Book  Google Scholar 

  6. A.J. Silva Neto, M.N. Özişik, J. Appl. Phys. 73, 2132 (1993)

    Article  ADS  Google Scholar 

  7. E. Ayón-Beato, A. García, R. Mansilla, C.A. Terrero-Escalante, Phys. Rev. D 62, 103 (2000)

    Article  Google Scholar 

  8. F. Bauer, S. Pereverzev, L. Rosasco, J. Complex. 23, 52 (2007)

    Article  Google Scholar 

  9. M. Prato, L. Zanni, J. Phys. Conf. Ser. 135, 012085 (2008)

    Article  Google Scholar 

  10. S.L.E.F. da Silva, J. Julià, F.H.R. Bezerra, Bull. Seismol. Soc. Am. 107, 1495 (2017)

    Article  Google Scholar 

  11. F.W. de Freitas Silva, S.L.E.F. da Silva, M.V.C. Henriques, G. Corso, PLoS ONE 14, e0213847 (2019)

    Article  Google Scholar 

  12. L. Guasch, O. Calderón Agudo, M.-X. Tang, P. Nachev, M. Warner, Npj Digit. Med. 3, 1 (2020)

    Article  Google Scholar 

  13. M. Bertero, M. Piana, Inverse problems in biomedical imaging: modeling and methods of solution, in Complex Systems in Biomedicine. ed. by A. Quarteroni, L. Formaggia, A. Veneziani (Springer, Milano, 2006)

    MATH  Google Scholar 

  14. J.F. Claerbout, F. Muir, Geophysics 38, 826 (1973)

    Article  ADS  Google Scholar 

  15. P.J. Huber, Ann. Statist. 1, 799 (1973)

    MathSciNet  Google Scholar 

  16. P. Zhou, Y. Lv, H. Wang, T. Chai, IEEE Trans. Ind. Electron. 64, 7141 (2017)

    Article  Google Scholar 

  17. A.Y. Aravkin, M.P. Friedlander, F.J. Herrmann, T. van Leeuwen, Math. Program. 135, 101 (2012)

    Article  Google Scholar 

  18. A. Ubaidillah, K.A. Notodiputro, A. Kurnia, A. Fitrianto, I.W. Mangku, I.O.P. Conf, Environ. Sci. Ser. Earth 58, 012013 (2017)

    Google Scholar 

  19. K.P. Bube, R.T. Langan, Geophysics 62, 1045 (1997)

    Article  Google Scholar 

  20. S.L.E.F. da Silva, P.T.C. Carvalho, C.A.N. da Costa, J.M. de Araújo, G. Corso, Misfit Function for Full Waveform Inversion Based on Shannon Entropy for Deeper Velocity Model Updates, vol. 1556 (SEG Technical Program Expanded Abstracts, 2019)

  21. S.L.E.F. da Silva, P.T.C. Carvalho, J.M. de Araújo, G. Corso, Phys. Rev. E 101, 053311 (2020)

    Article  ADS  Google Scholar 

  22. S.L.E.F. da Silva, C.A. da Costa, P.T.C. Carvalho, J.M. de Araújo, L. dos Santos-Lucena, G. Corso, Physica A 548, 124473 (2020)

    Article  MathSciNet  Google Scholar 

  23. S.L.E.F. da Silva, G.Z. dos Santos Lima, J.M. de Araújo, G. Corso, Physica A 563, 125496 (2021)

    Article  MathSciNet  Google Scholar 

  24. A. Rényi, On measures of entropy and information, in Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability (1960)

  25. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  26. G. Kaniadakis, Physica A 296, 405 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  27. I.P. de Lima, S.L.E.F. da Silva, G. Corso, J.M. de Araújo, Entropy 22, 464 (2020)

    Article  ADS  Google Scholar 

  28. H. Suyari, M. Tsukada, IEEE Trans. Inf. Theory 51, 753 (2005)

    Article  Google Scholar 

  29. A. Plastino, A. Plastino, Physica A 222, 347 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  30. C.G. Antonopoulos, H. Christodoulidi, Int. J. Bifurcat. Chaos 21, 2285 (2011)

    Article  Google Scholar 

  31. P.C.A. da Silva, T.V. Rosembach, A.A. Santos, M.S. Rocha, M.L. Martins, PLoS ONE 9, 1 (2014)

    Google Scholar 

  32. S.L.E.F. da Silva, C.A.N. da Costa, P.T.C. Carvalho, J.M. de Araújo, L.S. Lucena, G. Corso, An objective function based on q-Gaussian distribution for full-waveform inversion, in Conference Proceedings of the 82nd EAGE Annual Conference and Exhibition (At: Amsterdam, The Netherlands, 2020), p. 1

  33. G. Christoph, W. Wolf, Convergence Theorems with a Stable Limit Law (Wiley VCH, Weinheim, 1992)

    MATH  Google Scholar 

  34. C. Tsallis, S.V.F. Levy, A.M.C. Souza, R. Maynard, Phys. Rev. Lett. 75, 3589 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  35. E.T. Jaynes, Phys. Rev. 106, 620 (1957a)

    Article  MathSciNet  ADS  Google Scholar 

  36. E.T. Jaynes, Phys. Rev. 108, 171 (1957b)

    Article  MathSciNet  ADS  Google Scholar 

  37. B. Russell, D. Hampson, Comparison of Poststack Seismic Inversion Methods (SEG Technical Program Expanded Abstracts, 1991), p. 876

  38. C. Tsallis, Nonextensive Entropy: Interdisciplinary Applications (Oxford University Press, New York, 2004)

    MATH  Google Scholar 

  39. M. Gell-Mann, C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, New York, 2009)

    Google Scholar 

  40. C. Tsallis, R.S. Mendes, A. Plastino, Physica A 261, 534 (1998)

    Article  ADS  Google Scholar 

  41. S.L.E.F. da Silva, Physica A 125539 (2020)

  42. C. Tsallis, http://tsallis.cat.cbpf.br/TEMUCO.pdf. Accessed on 13th October 2020

  43. S.L.E.F. da Silva, G. Corso, Eur Phys. J. B (2020)

  44. C. Tsallis, Fractals 3, 541 (1995)

    Article  Google Scholar 

  45. S. Abe, G.B. Bagci, Phys. Rev. E 71, 016139 (2005)

    Article  ADS  Google Scholar 

  46. D. Prato, C. Tsallis, Phys. Rev. E 60, 2398 (1999)

    Article  ADS  Google Scholar 

  47. E. Artin, M. Butler, The Gamma Function (Courier Dover Publications, New York, 2015)

    Google Scholar 

  48. M.C. Bryson, Technometrics 16, 61 (1974)

    Article  MathSciNet  Google Scholar 

  49. S. Picoli Jr., R.S. Mendes, L.C. Malacarne, R.P.B. Santos, Braz. J. Phys. 39, 468 (2009)

    Article  ADS  Google Scholar 

  50. S.K. Ghosh, Geophysics 65, 951 (2000)

    Article  ADS  Google Scholar 

  51. R. Versteeg, Lead. Edge 13, 927 (1994)

    Article  Google Scholar 

  52. G. Martin, R. Wiley, K. Marfurt, Lead. Edge 25, 156 (2006)

    Article  Google Scholar 

  53. S.L.E.F. da Silva, P.T.C. Carvalho, C.A.N. da Costa, J.M. de Araújo, G. Corso, PLoS ONE 15, e0240999 (2020)

    Article  Google Scholar 

  54. N. Ricker, Bull. Seismol. Soc. Am. 3, 197 (1943)

    Article  Google Scholar 

  55. N. Ricker, Geophysics 9, 314 (1944)

    Article  ADS  Google Scholar 

  56. W.H. Press, Numerical Recipes in FORTRAN 90 (Cambridge University Press, Cambridge, 1996)

    MATH  Google Scholar 

  57. J. Nocedal, S.J. Wright, Numerical Optimization (Springer, New York, 2006)

    MATH  Google Scholar 

  58. D. Köhn, Time Domain 2D Elastic Full Waveform Tomography (Ph.D. Thesis, Christian-Albrechts Universität Kiel, 2011)

  59. D. Vigh, E. Starr, Geophysics 73, VE135 (2008)

    Article  ADS  Google Scholar 

  60. K. Pearson, O.M.F.E. Henrici, Philos. Trans. R. Soc. Lond. 187, 253 (1896)

    Article  ADS  Google Scholar 

  61. J.L. Devore, Probability and Statistics for Engineering and the Sciences, 8th edn. (Cengage Learning, Boston, 2011)

    Google Scholar 

  62. J.D. Evans, Straightforward Statistics for the Behavioral Sciences (Brooks/Cole Publishing Company, Pacific Grove, 1996)

    Google Scholar 

  63. P.R. King, Phys. World 10, 33 (1997)

    Article  Google Scholar 

  64. R. Kumar, B. Das, R. Chatterjee, K. Sain, J. Nat. Gas. Sci. Eng. 28, 356 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

J.V.T. de Lima, J.M. de Araújo, G. Corso and G.Z. dos Santos Lima gratefully acknowledge support from Petrobras through the project “Statistical physics inversion for multi-parameters in reservoir characterisation” at Federal University of Rio Grande do Norte. J.M. de Araújo thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for his productivity fellowship (Grant No. 313431/2018-3). G. Corso acknowledges CNPq for support through productivity fellowship (Grant No. 304421/2015-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Luiz E. F. da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, J.V.T.d., Silva, S.L.E.F.d., Araújo, J.M.d. et al. Nonextensive statistical mechanics for robust physical parameter estimation: the role of entropic index. Eur. Phys. J. Plus 136, 269 (2021). https://doi.org/10.1140/epjp/s13360-021-01274-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01274-6

Navigation