Skip to main content

Advertisement

Log in

A General Probabilistic Approach for Inference of Gaussian Model Parameters from Noisy Data of Point and Volume Support

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

Methods that rely on Gaussian statistics require a choice of a mean and covariance to describe a Gaussian probability distribution. This is the case using for example kriging, sequential Gaussian simulation, least-squares collocation, and least-squares-based inversion, to name a few examples. Here, an approach is presented that provides a general description of a likelihood function that describes the probability that a set of, possibly noisy, data of both point and/or volume support is a realization from a Gaussian probability distribution with a specific set of Gaussian model parameters. Using this likelihood function, the problem of inferring the parameters of a Gaussian model is posed as a non-linear inverse problem using a general probabilistic formulation. The solution to the inverse problem is then the a posteriori probability distribution over the parameters describing a Gaussian model, from which a sample can be obtained using, e.g., the extended Metropolis algorithm. This approach allows detailed uncertainty and resolution analysis of the Gaussian model parameters. The method is tested on noisy data of both point and volume support, mimicking data from remote sensing and cross-hole tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arabelos D, Tscherning CC (2003) Globally covering a-priori regional gravity covariance models. Adv Geosci 1:143–147

    Article  Google Scholar 

  • Asli M, Marcotte D, Chouteau M (2000) Direct inversion of gravity data by cokriging. In: Kleingeld W, Krige D (eds) Proceedings of the 6th international geostatistics congress, Cape Town, South Africa, 10–14 April, pp 64–73

  • Atkinson PM (2013) Downscaling in remote sensing. Int J Appl Earth Obs Geoinf 22:106–114. doi:10.1016/j.jag.2012.04.012

  • Box GEP, Tiao GC (1973) Bayesian inference in statistical analysis. Addison-Wesley, Reading, MA

  • Chiles J-P, Delfiner P (2012) Geostatistics: modeling spatial uncertainty. Wiley series in probability and statistics. Wiley, Hoboken, NJ

  • Cordua KS, Looms MC, Nielsen L (2008) Accounting for correlated data errors during inversion of cross-borehole ground penetrating radar data. Vadose Zone J 7(1):263

    Article  Google Scholar 

  • Cressie N (1985) Fitting variogram models by weighted least squares. Math Geol 17(5):563–586

    Article  Google Scholar 

  • Desassis N, Renard P (2013) Automatic variogram modeling by iterative least squares: univariate and multivariate cases. Math Geosci 34(4):453–470

    Article  Google Scholar 

  • Emery X (2010) Iterative algorithms for fitting a linear model of coregionalization. Comput Geosci 36(9):1150–1160

    Article  Google Scholar 

  • Frykman P, Deutsch C (1999) Geostatistical scaling laws applied to core and log data. In: Proceedings of SPE annual technical conference and exhibition, pp 887–898

  • Frykman P, Deutsch C (2002) Practical application of geostatistical scaling laws for data integration. Petrophys 43(3):153–171

  • Georgii H-O (2008) Stochastics: introduction to probability and statistics, 1st edn. Walter de Gruyter, Berlin. ISBN: 3110191458

  • Giroux B, Gloaguen E, Chouteau M (2007) bh_tomo: a Matlab borehole georadar 2d tomography package. Comput Geosci 33(1):126–137

    Article  Google Scholar 

  • Gloaguen E, Marcotte D, Chouteau M, Perroud H (2005) Borehole radar velocity inversion using cokriging and cosimulation. J Appl Geophys 57(4):242–259

    Article  Google Scholar 

  • Gloaguen E, Marcotte D, Giroux B, Dubreuil-Boisclair C, Chouteau M, Aubertin M (2007) Stochastic borehole radar velocity and attenuation tomographies using cokriging and cosimulation. J Appl Geophys 62(2):141–157

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evalutaion. Applied geostatistics series. Oxford University Press, New York

  • Goovaerts P (2008) Kriging and semivariogram deconvolution in the presence of irregular geographical units. Math Geosc 40(1):101–128

    Article  Google Scholar 

  • Goovaerts P (2010) Combining areal and point data in geostatistical interpolation: applications to soil science and medical geography. Math Geosc 42(5):535–554

    Article  Google Scholar 

  • Hansen TM, Mosegaard K (2008) VISIM: sequential simulation for linear inverse problems. Comput Geosci 34(1):53–76

    Article  Google Scholar 

  • Hansen TM, Journel AG, Tarantola A, Mosegaard K (2006) Linear inverse Gaussian theory and geostatistics. Geophysics 71(6):101–111

    Article  Google Scholar 

  • Hansen TM, Looms MC, Nielsen L (2008) Inferring the subsurface structural covariance model using cross-borehole ground penetrating radar tomography. Vadose Zone J 7(1):249–262

    Article  Google Scholar 

  • Hansen TM, Cordua KS, Looms MC, Mosegaard K (2013a) SIPPI: a Matlab toolbox for sampling the solution to inverse problems with complex prior information: part 1, methodology. Comput Geosci 52:470–480. doi:10.1016/j.cageo.2012.09.004

  • Hansen TM, Cordua KS, Looms MC, Mosegaard K (2013b) SIPPI: a Matlab toolbox for sampling the solution to inverse problems with complex prior information: part 2, application to cross hole GPR tomography. Comput Geosci 52:481–492. doi:10.1016/j.cageo.2012.10.001

  • Hansen TM, Cordua KS, Jacobsen BH, Mosegaard K (2014) Accounting for imperfect forward modeling in geophysical inverse problems exemplified for crosshole tomography. Geophysics 79(3):1–21

    Article  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97

    Article  Google Scholar 

  • Herzfeld UC (1992) Least-squares collocation, geophysical inverse theory and geostatistics: a bird’s eye view. Geophys J Int 111(2):237–249

    Article  Google Scholar 

  • Isaaks EH, Srivastava RM (1989) Applied geostatistics. Oxford University Press, Oxford

    Google Scholar 

  • Jarmołowski W, Bakuła M (2014) Precise estimation of covariance parameters in least-squares collocation by restricted maximum likelihood. Studia Geophysica et Geodaetica 58(2):171–189

    Article  Google Scholar 

  • Jensen JM, Jacobsen BH, Christensen-Dalsgaard J (2000) Sensitivity kernels for time-distance inversion. Solar Phys 192(1–2):231–239

    Article  Google Scholar 

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, New York

    Google Scholar 

  • Kay SM (2006) Intuitive probability and random processes using matlab. Springer, New York

    Book  Google Scholar 

  • Kelsall J, Wakefield J (2002) Modeling spatial variation in disease risk. J Am Stat Assoc 97(459):692–701

    Article  Google Scholar 

  • Kitanidis PK, Lane RW (1985) Maximum likelihood parameter estimation of hydrologic spatial processes by the Gauss–Newton method. J Hydrol 79(1/2):53–71

    Article  Google Scholar 

  • Knudsen P (1987) Estimation and modelling of the local empirical covariance function using gravity and satellite altimeter data. Bull Geod 61(2):145–160

    Article  Google Scholar 

  • Krarup T (1969) A contribution to the mathematical foundation of physical geodesy. Meddelse no. 44, Geodaetisk Institut, Koebenhavn, p 80

  • Kupfersberger H, Deutsch CV, Journel AG (1998) Deriving constraints on small-scale variograms due to variograms of large-scale data. Math Geol 30(7):837–852

    Article  Google Scholar 

  • Kyriakidis PC (2004) A geostatistical framework for area-to-point spatial interpolation. Geogr Anal 36(3):259–289

    Article  Google Scholar 

  • Lark R, Papritz A (2003) Fitting a linear model of coregionalization for soil properties using simulated annealing. Geoderma 115(3):245–260

    Article  Google Scholar 

  • Lele SR, Das A (2000) Elicited data and incorporation of expert opinion for statistical inference in spatial studies. Math Geol 32(4):465–487. doi:10.1023/A:1007525900030

  • Liu JS (1996) Metropolized independent sampling with comparisons to rejection sampling and importance sampling. Stat Comput 6(2):113–119

    Article  Google Scholar 

  • Liu Y, Journel AG (2009) A package for geostatistical integration of coarse and fine scale data. Comput Geosci 35(3):527–547

    Article  Google Scholar 

  • Looms MC, Hansen TM, Cordua KS, Nielsen L, Jensen KH, Binley A (2010) Geostatistical inference using crosshole ground-penetrating radar. Geophysics 75(6):29

    Article  Google Scholar 

  • Mosegaard K (1998) Resolution analysis of general inverse problems through inverse Monte Carlo sampling. Inverse Probl 14:405

    Article  Google Scholar 

  • Mosegaard K, Tarantola A (1995) Monte Carlo sampling of solutions to inverse problems. J Geophys Res 100(B7):12431–12447

    Article  Google Scholar 

  • Pardo-Igúzquiza E (1997) Mlreml: a computer program for the inference of spatial covariance parameters by maximum likelihood and restricted maximum likelihood. Comput Geosci 23(2):153–162

    Article  Google Scholar 

  • Pardo-Igúzquiza E (1998) Maximum likelihood estimation of spatial covariance parameters. Math Geol 30(1):95–108

    Article  Google Scholar 

  • Pardo-Igúzquiza E (1999) Varfit: a Fortran-77 program for fitting variogram models by weighted least squares. Comput Geosci 25(3):251–261

    Article  Google Scholar 

  • Pardo-Igúzquiza E, Dowd PA (2005) Emlk2d: a computer program for spatial estimation using empirical maximum likelihood kriging. Comput Geosci 31:361–370

    Article  Google Scholar 

  • Remy N, Boucher A, Wu J (2008) Applied geostatistics with SGeMS: a user’s guide. Cambridge University Press, Cambridge

    Google Scholar 

  • Shamsipour P, Marcotte D, Chouteau M, Keating P (2010) 3d stochastic inversion of gravity data using cokriging and cosimulation. Geophysics 75(1):1–10

    Article  Google Scholar 

  • Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Society of Industrialand Applies Mathematics, Philadelphia

  • Tarantola A, Valette B (1982a) Generalized nonlinear inverse problems solved using the least squares criterion. Rev Geophys Space Phys 20(2):219–232

    Article  Google Scholar 

  • Tarantola A, Valette B (1982b) Inverse problems = quest for information. J Geophys 50(3):150–170

    Google Scholar 

  • Truong PN, Heuvelink GMB, Pebesma E (2014) Bayesian area-to-point kriging using expert knowledge as informative priors. Int J Appl Earth Obs Geoinf 30:128–138. doi:10.1016/j.jag.2014.01.019

  • Warnes J, Ripley B (1987) Problems with likelihood estimation of covariance functions of spatial gaussian processes. Biometrika 74(3):640–642

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dong E&P for financial support. Matlab code for inferring properties of three-dimensional anisotropic covariance models from noisy linear average data (and data of point support) using the proposed method is available from http://sippi.sourceforge.net/. We thank professor emeritus Carl Christian Tscherning for illuminating discussion about collocated least-squares.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mejer Hansen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, T.M., Cordua, K.S. & Mosegaard, K. A General Probabilistic Approach for Inference of Gaussian Model Parameters from Noisy Data of Point and Volume Support. Math Geosci 47, 843–865 (2015). https://doi.org/10.1007/s11004-014-9567-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-014-9567-5

Keywords

Navigation