Skip to main content

Advertisement

Log in

P-Impedance and Vp/Vs prediction based on AVO inversion scheme with deep feedforward neural network: a case study from tight sandstone reservoir

  • Research Article - Applied Geophysics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The low-frequency component of seismic data is an inevitable part to obtain absolute P-impedance (\(I_{p}\)) and \(V_{p} /V_{s}\) ratio of the subsurface, especially for the reservoir sweet spot. In this work, we train the deep feedforward neural network (DFNN) with band-pass seismic data and well log data to obtain favorable low-frequency components. Specifically, the Bayesian inference strategy is first applied to the pre-stack constrained sparse spike inversion process, obtaining an “initial” inverted band-pass parameters, which are subsequently used as input when applying the DFNN algorithm to predict low- and band-pass parameters. Moreover, the high linear correlation coefficient between the DFNN-based inversion results and the realistic well logging curves of the blind wells demonstrates that the DFNN-based inversion scheme exhibits strong robustness and good generalization ability. Ultimately, we apply the proposed DFNN-based inversion strategy to a tight sandstone reservoir located at the Sichuan basin field from onshore China. Both low- and band-pass \(I_{p}\) and \(V_{p} /V_{s}\) inverted for the clastic formation of the Sichuan basin show a strong correlation with the corresponding \(I_{p}\) and \(V_{p} /V_{s}\) logs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alfarraj M, AlRegib G (2019) Petrophysical property estimation from seismic data using recurrent neural networks. Available online at: arxiv:1901.08623

  • Araya-Polo M, Jennings J, Adle A, Dahlke T (2018) Deep-learning tomography. Lead Edge 37(1):58–66

    Article  Google Scholar 

  • Ball V, Blangy JP, Schiott C, Chaveste A (2014) Relative rock physics. Lead Edge 33(3):276–286

    Article  Google Scholar 

  • Biswas R, Sen MK, Das V, Mukerji T (2019) Prestack and post stack inversion using a physics-guided convolutional neural network. Interpretation 7(3):SE161–SE174

    Article  Google Scholar 

  • Buland A, Omre H (2003) Bayesian linearized AVO inversion. Geophysics 68:185–198

    Article  Google Scholar 

  • Caers J (2011) Modeling uncertainty in the earth sciences. Wiley, Chichester

    Book  Google Scholar 

  • Connolly P (1999) Elastic impedance. Lead Edge 18(4):438–438

    Article  Google Scholar 

  • Das V, Mukerji T (2020) Petrophysical properties prediction from prestack seismic data using convolutional neural networks. Geophysics 85(5):N41–N55

    Article  Google Scholar 

  • Das V, Pollack A, Wollner U, Mukerji T (2019) Convolutional neural network for seismic impedance inversion. Geophysics 84(6):R869–R880

    Article  Google Scholar 

  • Debeye HWJ, Vanriel P (1990) Lp-Norm deconvolution. Geophys Prosp 38(4):381–403

    Article  Google Scholar 

  • Deutsch CV (2002) Geostatistical reservoir modeling. Oxford University Press, New York

    Google Scholar 

  • Di H, Chen X, Maniar H, Abubakar A (2020) Semi-supervised seismic and well log integration for reservoir property estimation. In: SEG program expanded abstracts, 2166–2170

  • Doyen PM, Guidish TM (1992) Seismic discrimination of lithology: a Monte Carlo approach. In R. E. Sheriff, (ed.), Reservoir geophysics: SEG, 243–250

  • Eidsvik J, Avseth P, Omre H, Mukerji T, Mavko G (2004) Stochastic reservoir characterization using prestack seismic data. Geophysics 69:978–993

    Article  Google Scholar 

  • Eidsvik J, Mukerji T, Bhattacharjya D (2015) Value of information in the earth sciences, (integrating spatial modeling and decision analysis). Cambridge University Press, London

    Book  Google Scholar 

  • Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Boston

    Google Scholar 

  • Grana D, Verma S, Pafeng J, Lang X, Sharma H, Wu W, Campbell-Stone E, Ng K, Alvarado V, Mallick S, Kaszuba J (2017) A rock physics and seismic reservoir characterization study of the rock springs uplift, a carbon dioxide sequestration site in Southwestern Wyoming. Int J Greenhouse Gas Control 63:296–309. https://doi.org/10.1016/j.ijggc.2017.06.004

    Article  Google Scholar 

  • Hampson DP, Russel BH (2005) Simultaneous inversion of pre-stack seismic data. In: 75th Annual international meeting, SEG, expanded abstracts 1633–1637

  • Kelly M (2001) AVO inversion, part 1: isolating rock property contrasts. Geophysics 20(3):320

    Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105

    Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  • Li H, Lin J, Wu BH, Gao JH, Liu NH (2021) Elastic properties estimation from prestack seismic data using GGCNNs and application on tight sandstone reservoir characterization. IEEE Trans Geosci Remote Sens 60:1–21

    Article  Google Scholar 

  • Lopez-Moreno I, Gonzalez-Dominguez J, Martinez D (2016) On the use of deep feedforward neural networks for automatic language identification. Comput Speech Lang 40:46

    Article  Google Scholar 

  • Mesdag PR, Marquez D, de Groot L, Aubin V (2010) Updating low frequency model. In: 72nd EAGE conference and exhibition incorporating SPE EUROPEC, Barcelona

  • Monajemi H, Donoho DL, Stodden V (2016) Making massive computational experiments painless: big data, 2368–2373

  • Mukerji T, Jørstad A, Avseth P, Mavko G, Granli JR (2001) Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir: seismic inversions and statistical rock physics. Geophysics 66:988–1001

    Article  Google Scholar 

  • Peters B, Granek J, Haber E (2019) Multi-resolution neural networks for tracking seismic horizons from few training images. Interpretation 7(3):1–54. https://doi.org/10.1190/int-2018-0225.1

    Article  Google Scholar 

  • Richardson A (2018) Seismic full-waveform inversion using deep learning tools and techniques. http://arxiv.org/abs/1801.07232

  • Russell BH, Gray D, Hampson DP (2011) Linearized AVO and poroelasticity. Geophysics 76(3):C19–C29

    Article  Google Scholar 

  • Yuan SY, Wang SX, Luo YE, Wei WW, Wang GC (2019) Impedance inversion by using the low-frequency full-waveform inversion result as an a priori model. Geophysics 84:R149–R164

    Article  Google Scholar 

  • Yuan SY, Jiao XQ, Luo YE, Sang WJ, Wang XS (2021) Double-scale supervised inversion with a data-driven forward model for low-frequency impedance recovery. Geophysics 0:1–102

    Google Scholar 

  • Zheng Y, Zhang Q (2018) Pre-stack seismic inversion using deep learning. In: Presented at 1st EAGE/PESGB workshop on machine learning. Downloaded 07/30/19 to 180.101.128.24

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

XM contributed to the conception of the study; XH and BW performed the experiment; ZW contributed significantly to analysis and manuscript preparation; HZ performed the data analyses and wrote the manuscript; HW and XM helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Xinjun Mao.

Ethics declarations

Conflict of interest

All authors declares that they have no conflict of interest.

Ethics approval

All authors approve that this paper has not been submitted or published anywhere.

Consent to participation

All authors consent to participate in this work.

Consent for publication

All authors consent to publish this work.

Additional information

Edited by Prof. Sanyi Yuan (ASSOCIATE EDITOR) / Prof. Michał Malinowski (CO-EDITOR-IN-CHIEF).

Appendix A

Appendix A

This appendix differentiates the regularization term \(R(m)\) in Eq. 6. \(R(m)\) can be written as:

$$\frac{{\partial R\left( {\mathbf{m}} \right)}}{{\partial {\mathbf{m}}}} = \left[ {\frac{{\partial R\left( {\mathbf{m}} \right)}}{{\partial m_{1} }} \cdot \cdot \cdot \frac{{\partial R\left( {\mathbf{m}} \right)}}{{\partial m_{k} }} \cdot \cdot \cdot \frac{{\partial R\left( {\mathbf{m}} \right)}}{{\partial m_{3N} }}} \right]^{T}.$$
(17)

Taking the derivative of \(R(m)\) with respect to \(m_{k}\), then we can get:

$$\frac{{\partial R\left( {\mathbf{m}} \right)}}{{\partial m_{k} }} = 2\sum\limits_{i = 1}^{N} {\left( {\frac{1}{{1 + {\mathbf{m}}^{T} {{\varvec{\Phi}}}^{i} {\mathbf{m}}}}} \right)} \frac{\partial }{{\partial m_{k} }}{\mathbf{m}}^{T} {{\varvec{\Phi}}}^{i} {\mathbf{m}}.$$
(18)

If expanding the second term of Eq. (18), then we have:

$$\frac{{\partial R\left( {\mathbf{m}} \right)}}{{\partial m_{k} }} = 2\sum\limits_{i = 1}^{N} {\left( {\frac{1}{{1 + {\mathbf{m}}^{T} {{\varvec{\Phi}}}^{i} {\mathbf{m}}}}} \right)} \frac{\partial }{{\partial m_{k} }}\left( {\sum\nolimits_{l = 1}^{3N} {\sum\nolimits_{N = 1}^{3N} {m_{l} m_{n} {{\varvec{\Phi}}}_{\ln }^{i} } } } \right).$$
(19)

By using the fact \(\frac{{\partial m_{p} }}{{\partial m_{q} }} = \delta_{pq} \left\{ {\begin{array}{*{20}l} { = 1,} \hfill & {{\text{if}}\,p = q} \hfill \\ { = 0,} \hfill & {{\text{if}}\,p \ne q} \hfill \\ \end{array} } \right.\), Eq. (19) can be written as:

$$\frac{{\partial R\left( {\mathbf{m}} \right)}}{{\partial m_{k} }} = 2\sum\nolimits_{i = 1}^{N} {\left( {\frac{{2\sum\nolimits_{l = 1}^{3N} {m_{n} {{\varvec{\Phi}}}_{kn}^{i} } }}{{1 + {\mathbf{m}}^{T} {{\varvec{\Phi}}}^{i} {\mathbf{m}}}}} \right)}.$$
(20)

After changing the order of summation of Eq. (20), then:

$$\frac{{\partial R\left( {\mathbf{m}} \right)}}{{\partial m_{k} }} = 2\sum\nolimits_{i = 1}^{3N} {\left( {\sum\limits_{l = 1}^{N} {\frac{{2{{\varvec{\Phi}}}_{kn}^{i} }}{{1 + {\mathbf{m}}^{T} {{\varvec{\Phi}}}^{i} {\mathbf{m}}}}} } \right)} m_{n} { = }2\sum\nolimits_{i = 1}^{3N} {\Phi_{kn} } m_{n} ,$$
(21)

where \(Q_{kn} = \sum\nolimits_{i = 1}^{N} {\frac{{2{{\varvec{\Phi}}}_{kn}^{i} }}{{1 + {\mathbf{m}}^{T} {{\varvec{\Phi}}}^{i} {\mathbf{m}}}}, \, k,n = 1,2,3, \ldots ,3N}.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Han, X., Wu, B. et al. P-Impedance and Vp/Vs prediction based on AVO inversion scheme with deep feedforward neural network: a case study from tight sandstone reservoir. Acta Geophys. 70, 563–580 (2022). https://doi.org/10.1007/s11600-021-00720-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-021-00720-4

Keywords

Navigation