Skip to main content
Log in

3D sparse inversion of magnetic amplitude data when strong remanence exists

  • Research Article - Applied Geophysics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Three-dimensional inversion for susceptibility distributions is a common approach for quantitative interpretation of magnetic data. However, this approach will fail when strong remanence exists because the total magnetization direction is unknown. Magnetic amplitude inversion can reduce remanence effects and thus improve reconstructed results. In this paper, we propose a sparse magnetic amplitude inversion method which minimizes an L0-like-norm of model parameters subject to bound constraints. By using the iteratively reweighed least squares technique, the bound-constrained L0-like-norm sparse inversion is transformed to a sequence of bound-constrained nonlinear least squares subproblems. To deal with the bound constraints, we use a logarithm barrier algorithm to solve each subproblem. Compared with the classical L2-norm inversion method, the proposed sparse method utilizes the known physical property information to produce binary results characterized by sharp boundaries. This method is tested on synthetic data produced by a dipping dyke model and a field data set acquired in Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abedi M, Fournier D, Devriese SG, Oldenburg DW (2018) Potential field signatures along the Zagros collision zone in Iran. Tectonophysics 722:25–42

    Article  Google Scholar 

  • Beaton AE, Tukey JW (1974) The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics 16(2):147–185

    Article  Google Scholar 

  • Beiki M, Clark DA, Austin JR, Foss CA (2012) Estimating source location using normalized magnetic source strength calculated from magnetic gradient tensor data. Geophysics 77(6):J23–J37

    Article  Google Scholar 

  • Chartrand R, Yin W (2008) Iteratively reweighted algorithms for compressive sensing. In: 2008 IEEE international conference on acoustics, speech and signal processing, pp 3869–3872

  • Dampney CNG (1969) The equivalent source technique. Geophysics 34(1):39–53

    Article  Google Scholar 

  • Daubechies I, DeVore R, Fornasier M, Güntürk CS (2010) Iteratively reweighted least squares minimization for sparse recovery. Commun Pure Appl Math 63(1):1–38

    Article  Google Scholar 

  • Ellis RG, de Wet B, Macleod IN (2012) Inversion of magnetic data for remanent and induced sources. ASEG Ext Abstr 2012(1):1–4

    Google Scholar 

  • Farquharson CG (2008) Constructing piecewise-constant models in multidimensional minimum-structure inversions. Geophysics 73(1):K1–K9

    Article  Google Scholar 

  • Farquharson CG, Oldenburg DW (1998) Non-linear inversion using general measures of data misfit and model structure. Geophys J Int 134(1):213–227

    Article  Google Scholar 

  • Guo L, Meng X, Zhang G (2014) Three-dimensional correlation imaging for total amplitude magnetic anomaly and normalized source strength in the presence of strong remanent magnetization. J Appl Geophys 111:121–128

    Article  Google Scholar 

  • Holland PW, Welsch RE (1977) Robust regression using iteratively reweighted least-squares. Commun Stat-Theory Methods 6(9):813–827

    Article  Google Scholar 

  • Hou ZC (1979) Using potential field transformation to build an interpretation system of gravity and magnetic anomalies. Geophys Geochem Explor 3(3):1–10 (in Chinese with English abstract)

    Google Scholar 

  • Krahenbuhl RA, Li Y (2017) Investigation of magnetic inversion methods in highly magnetic environments under strong self-demagnetization effect. Geophysics 82(6):J83–J97

    Article  Google Scholar 

  • Last BJ, Kubik K (1983) Compact gravity inversion. Geophysics 48(6):713–721

    Article  Google Scholar 

  • Lelievre PG, Oldenburg DW (2006) Magnetic forward modelling and inversion for high susceptibility. Geophys J Int 166(1):76–90

    Article  Google Scholar 

  • Lelièvre PG, Oldenburg DW (2009) A 3D total magnetization inversion applicable when significant, complicated remanence is present. Geophysics 74(3):L21–L30

    Article  Google Scholar 

  • Lelièvre PG, Oldenburg DW, Williams NC (2009) Integrating geological and geophysical data through advanced constrained inversions. Explor Geophys 40(4):334–341

    Article  Google Scholar 

  • Li SL, Li Y (2014) Inversion of magnetic anomaly on rugged observation surface in the presence of strong remanent magnetization. Geophysics 79(2):J11–J19

    Article  Google Scholar 

  • Li Y, Oldenburg DW (1996) 3-D inversion of magnetic data. Geophysics 61(2):394–408

    Article  Google Scholar 

  • Li Y, Oldenburg DW (2003) Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophys J Int 152(2):251–265

    Article  Google Scholar 

  • Li Y, Sun J (2016) 3D magnetization inversion using fuzzy c-means clustering with application to geology differentiation. Geophysics 81(5):J61–J78

    Article  Google Scholar 

  • Li Y, Shearer SE, Haney MM, Dannemiller N (2010) Comprehensive approaches to 3D inversion of magnetic data affected by remanent magnetization. Geophysics 75(1):L1–L11

    Article  Google Scholar 

  • Li ZL, Yao CL, Zheng YM, Meng XH, Zhang YM (2015) 3D data-space inversion of magnetic amplitude data. Chin J Geophys 58(10):3804–3814 (in Chinese with English abstract)

    Google Scholar 

  • Li Z, Yao C, Zheng Y, Wang J, Zhang Y (2018) 3D magnetic sparse inversion using an interior-point method. Geophysics 83(3):J15–J32

    Article  Google Scholar 

  • Liu S, Hu X, Liu T, Feng J, Gao W, Qiu L (2013) Magnetization vector imaging for borehole magnetic data based on magnitude magnetic anomaly. Geophysics 78(6):D429–D444

    Article  Google Scholar 

  • Liu S, Hu X, Xi Y, Liu T, Xu S (2015) 2D sequential inversion of total magnitude and total magnetic anomaly data affected by remanent magnetization. Geophysics 80(3):K1–K12

    Article  Google Scholar 

  • Liu S, Hu X, Zhang H, Geng M, Zuo B (2017) 3D magnetization vector inversion of magnetic data: improving and comparing methods. Pure appl Geophys 174(12):4421–4444

    Article  Google Scholar 

  • Nabighian MN (1972) The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics 37(3):507–517

    Article  Google Scholar 

  • Oldenburg DW, Li Y, Ellis RG (1997) Inversion of geophysical data over a copper gold porphyry deposit: a case history for Mt. Milligan Geophys 62(5):1419–1431

    Article  Google Scholar 

  • Paine J, Haederle M, Flis M (2001) Using transformed TMI data to invert for remanently magnetised bodies. Explor Geophys 32(3–4):238–242

    Article  Google Scholar 

  • Pedersen LB (1978) Wavenumber domain expressions for potential fields from arbitrary 2-, 21/2-, and 3-dimensional bodies. Geophysics 43(3):626–630

    Article  Google Scholar 

  • Pilkington M (1997) 3-D magnetic imaging using conjugate gradients. Geophysics 62(4):1132–1142

    Article  Google Scholar 

  • Pilkington M (2009) 3D magnetic data-space inversion with sparseness constraints. Geophysics 74(1):L7–L15

    Article  Google Scholar 

  • Pilkington M, Beiki M (2013) Mitigating remanent magnetization effects in magnetic data using the normalized source strength. Geophysics 78(3):J25–J32

    Article  Google Scholar 

  • Portniaguine O, Zhdanov MS (1999) Focusing geophysical inversion images. Geophysics 64(3):874–887

    Article  Google Scholar 

  • Portniaguine O, Zhdanov MS (2002) 3-D magnetic inversion with data compression and image focusing. Geophysics 67(5):1532–1541

    Article  Google Scholar 

  • Rao BD, Kreutz-Delgado K (1999) An affine scaling methodology for best basis selection. IEEE Trans Signal Process 47(1):187–200

    Article  Google Scholar 

  • Roest WR, Verhoef J, Pilkington M (1992) Magnetic interpretation using the 3-D analytic signal. Geophysics 57(1):116–125

    Article  Google Scholar 

  • Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60(1–4):259–268

    Article  Google Scholar 

  • Shearer S, Li Y (2004) 3D inversion of magnetic total gradient data in the presence of remanent magnetization. SEG Tech Progr Expand Abstr 2004:774–777

    Google Scholar 

  • Stavrev P, Gerovska D (2000) Magnetic field transforms with low sensitivity to the direction of source magnetization and high centricity. Geophys Prospect 48(2):317–340

    Article  Google Scholar 

  • Sun J, Li Y (2018) Magnetization clustering inversion—Part 1: building an automated numerical optimization algorithm. Geophysics 83(5):J61–J73

    Article  Google Scholar 

  • Wang MY, Di QY, Xu K, Wang R (2004) Magnetization vector inversion equations and 2D forward and inversed model study. Chin J Geophys 47(3):528–534 (in Chinese with English abstract)

    Google Scholar 

  • Wilson H (1985) Analysis of the magnetic gradient tensor: defence Research Establishment Pacific. Tech Memo 8:5–13

    Google Scholar 

  • Zhou J, Meng X, Guo L, Zhang S (2015) Three-dimensional cross-gradient joint inversion of gravity and normalized magnetic source strength data in the presence of remanent magnetization. J Appl Geophys 119:51–60

    Article  Google Scholar 

Download references

Acknowledgements

We thank Geoscience Australia for providing the field data. This work was supported by the Innovation Fund Project of Hebei University of Engineering (No. SJ010002155) and National Natural Science Foundation of China (No. 41574132). We would like to thank the associate editor T. Grabowska and two anonymous reviewers for their constructive comments that have helped improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zelin Li.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendix

Appendix

The logarithm barrier method for bound-constrained L2-norm inversion of magnetic amplitude data

Li and Oldenburg (2003) and Li et al. (2010) have developed practical logarithm barrier methods for solving bound-constrained nonlinear least squares problems in magnetic inversion. We summarized their methods (Li and Oldenburg, 2003; Li et al. 2010) here. First, for simplicity, we omit the superscripts and rewrite Eq. 9 as

$$\begin{aligned} \hbox{min} \quad \varphi_{c} (\varvec{m}) = \varphi_{d} (\varvec{m}) + \mu \varphi_{cm} (\varvec{m}) \hfill \\ {\text{s}} . {\text{t}} .\;\quad \varvec{m}_{\hbox{min} } \le \varvec{m} \le \varvec{m}_{\hbox{max} } . \hfill \\ \end{aligned}$$
(11)

The logarithm barrier method approximates Eq. 11 as a sequence of unconstrained minimizations, making the inequality constraints implicit in the new objective function by adding a barrier term:

$$\hbox{min} \quad \varphi (\varvec{m}) = \varphi_{c} (\varvec{m}) + \lambda \varphi_{\lambda } (\varvec{m}),$$
(12)

where λ is a barrier parameter and will be decreased during minimization. φλ is a barrier function and has the form

$$\varphi_{\lambda } (\varvec{m}) = - \sum\limits_{j = 1}^{M} {\left[ {\ln (\frac{{m_{j} - m_{\hbox{min} } }}{{m_{\hbox{max} } - m_{\hbox{min} } }}) + \ln (\frac{{m_{\hbox{max} } - m_{j} }}{{m_{\hbox{max} } - m_{\hbox{min} } }})} \right]} .$$
(13)

Applying one step of Gauss–Newton method for Eq. 12 at the kth iteration, we obtain

$$\begin{aligned} &\left\{ {(\varvec{J}^{(k)} )^{T} \varvec{W}_{d}^{T} \varvec{W}_{d} \varvec{J}^{(k)} \; + \;\mu \varvec{Z}^{T} \varvec{R}^{T} \varvec{RZ}\; + \;\lambda^{(k - 1)} [(\varvec{X}^{(k)} )^{ - 2} + (\varvec{Y}^{(k)} )^{ - 2} ]} \right\}\Delta \varvec{m} \hfill \\ &= (\varvec{J}^{(k)} )^{T} \varvec{W}_{d}^{T} \varvec{W}_{d} [\varvec{d} - \varvec{F}(\varvec{m}^{(k - 1)} )]\; - \;\mu \varvec{Z}^{T} \varvec{R}^{T} \varvec{RZm}^{(k - 1)} \; + \;\lambda^{(k - 1)} [(\varvec{X}^{(k)} )^{ - 1} \; + \;(\varvec{Y}^{(k)} )^{ - 1} ]{\mathbf{1}}, \hfill \\ \end{aligned}$$
(14)

where J(k) is the Jacobian matrix (Li et al. 2010) at the kth iteration, Δm is the descent direction of objective function, X(k) and Y(k) are diagonal matrixes with m(k−1) − mmin and m(k−1) − mmax on their main diagonals, and 1 is the column vector with all entries 1. Once the descent direction has been computed, the solution of Eq. 11 can be iteratively solved with appropriate choice of a step length and careful update of the barrier parameter. The algorithm for solving Eq. 11 is summarized as follows:

  1. 1.

    Initialize \(\varvec{m}^{(0)} = {\mathbf{0}}{\mathbf{.001}}\), \(\lambda^{(0)} = {{\varphi_{c} (\varvec{m}^{(0)} )} \mathord{\left/ {\vphantom {{\varphi_{c} (\varvec{m}^{(0)} )} {\varphi_{\lambda } (\varvec{m}^{(0)} )}}} \right. \kern-0pt} {\varphi_{\lambda } (\varvec{m}^{(0)} )}}\), and k = 1.

  2. 2.

    Form X(k) and Y(k) from m(k−1).

  3. 3.

    Solve Eq. 14 for Δm.

  4. 4.

    \(\varvec{m}^{(k)} \leftarrow \varvec{m}^{(k - 1)} + \gamma \beta^{(k)} \Delta \varvec{m}\), where \(\gamma = 0.925\) and

$$\beta^{(k)} = \left\{ {\begin{array}{*{20}c} {1,} & {{\text{if}}\;\varvec{m}_{\hbox{max} } > \varvec{m}^{(k - 1)} + \Delta \varvec{m} > \varvec{m}_{\hbox{min} } } \\ {\hbox{min} \left( {\begin{array}{*{20}c} {\mathop {\hbox{min} }\limits_{{\Delta m_{i} < 0}} \frac{{\varvec{m}_{i}^{(k - 1)} - m_{\hbox{min} } }}{{\left| {\Delta \varvec{m}_{i} } \right|}},} & {\mathop {\hbox{min} }\limits_{{\Delta m_{i} > 0}} \frac{{m_{\hbox{max} } - \varvec{m}_{i}^{(k - 1)} }}{{\Delta \varvec{m}_{i} }}} \\ \end{array} } \right),} & {{\text{otherwise}} .} \\ \end{array} } \right.$$
  1. 5.

    \(\lambda^{(k)} \leftarrow [1 - \hbox{min} (\beta^{(k)} ,\gamma )]\lambda^{(k - 1)}\).

  2. 6.

    Terminate on convergence or when k attains a specified maximum number of iterations kmax. Otherwise, \(n \leftarrow n + 1\) and go to Step 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yao, C. 3D sparse inversion of magnetic amplitude data when strong remanence exists. Acta Geophys. 68, 365–375 (2020). https://doi.org/10.1007/s11600-020-00399-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-020-00399-z

Keywords

Navigation