Askhar F, Mahdi S (2003) Comparison of two fitting methods for the log-logistic distribution. Water Resour Res 39(8):7–8
Google Scholar
Aucoin F (2015) FAdist: distributions that are sometimes used in hydrology. R package version 2.2. https://CRAN.R-project.org/package=FAdist. Accessed 20 Mar 2016
Bayazit M (2015) Nonstationarity of hydrological records and recent trends in trend analysis: a state-of-the-art review. Environ Process 2(3):527–542. doi:10.1007/s40710-015-0081-7
Article
Google Scholar
Becker M, Klößner S (2017) PearsonDS: Pearson distribution system. R package version 1.0. https://CRAN.R-project.org/package=PearsonDS. Accessed 20 Feb 2017
Bulletin No. 15 (1969) A uniform technique for determining flood flow frequencies, Hydrology Committee of Water Resources Council
Castellarin A, Kohnova S, Gaal L, Fleig A, Salinas JL, Toumazis A, Kjeldsen TR, Macdonald N (2012) Review of applied-statistical methods for flood-frequency analysis in Europe, NERC/centre for ecology & hydrology, Wallingford. (ESSEM COST Action ES0901)
Cole TJ, Green PJ (1992) Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 11:1305–1319. doi:10.1002/sim.4780111005
Article
Google Scholar
Cunnane C (1989) Statistical distributions for flood frequency analysis, operational hydrol. Rep. No. 33 WMO-No. 718. World Meteorological Organization, Geneva
Google Scholar
Debele SE, Bogdanowicz E, Strupczewski WG (2017) A comparison of three approaches to non-stationary flood frequency analysis, Acta Geoph., this issue, submitted for publication
Flood Studies Report (1975) 5 Volumes + maps. Natural Environment Research Council, London
Google Scholar
Galiano SGG, Gimenez PO, Osorio JDG (2015) Assessing nonstationary spatial patterns of extreme droughts from long-term high-resolution observational dataset on a semiarid basin (Spain). Water 7(10):5458–5473. doi:10.3390/w7105458
Article
Google Scholar
Gilleland E, Katz RW (2016) extRemes 2.0: an extreme value analysis package in R. J Stat Softw 72(8):1–39. doi:10.18637/jss.v072.i08
Article
Google Scholar
Guidelines for flood frequency analysis long measurement series of river discharge (2005) WMO/HOMS Component I81.3.01. http://www.wmo.int/pages/prog/hwrp/homs/Components/English/i81301.htm. Accessed Apr 2017
Hastie TJ, Tibshirani RJ (1992) Generalized additive models, monographs on statistics and applied probability 43. Chapman & Hall/CRS, Boca Raton
Google Scholar
Hosking JRM, Wallis JR (1997) Regional frequency analysis, an approach based on L-moments. Cambridge University Press, New York
Book
Google Scholar
Hudson IL, Rea A, Dalrymple ML, Eilers PHC (2008) Climate impacts on sudden infant death syndrome: a GAMLSS approach. In: Proceedings of the 23rd international workshop on statistical modelling. pp 277–280
Jawitz JW (2004) Moments of truncated continuous univariate distribution. Adv Water Resour 27:269–281
Article
Google Scholar
Kochanek K, Strupczewski WG, Bogdanowicz E, Feluch W, Markiewicz I (2013) Application of a hybrid approach in nonstationary flood frequency analysis—a Polish perspective. Nat Hazards Earth Syst Sci Discuss 1(5):6001–6024. doi:10.5194/nhessd-1-6001-2013
Article
Google Scholar
Koutsoyiannis D (2006) Nonstationarity versus scaling in hydrology. J Hydrol 324:239–254
Article
Google Scholar
Koutsoyiannis D (2013) Hydrology and change. Hydrol Sci J 58(6):1177–1197. doi:10.1080/02626667.2013.804626
Article
Google Scholar
Koutsoyiannis D, Montanari A (2007) Statistical analysis of hydroclimatic time series: uncertainty and insights. Water Resour Res 43(5):W05429. doi:10.1029/2006WR005592
Article
Google Scholar
Langbein WB (1949) Annual floods and the partial-duration series. Trans Am Geophys Union 30(6):879–881
Article
Google Scholar
Lins HF, Cohn TA (2011) Stationarity: wanted dead or alive? J Am Water Resour Assoc 47(3):475–480. doi:10.1111/j.1752-1688.2011.00542.x
Article
Google Scholar
López J, Francés F (2013) Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates. Hydrol Earth Syst Sci 17:3189–3203. doi:10.5194/hess-17-3189-2013
Article
Google Scholar
Machado MJ, Botero BA, López J, Francés FA, Díez-Herrero BG (2015) Flood frequency analysis of historical flood data under stationary and non-stationary modelling. Hydrol Earth Syst Sci 19:2561–2576. doi:10.5194/hess-19-2561-2015
Article
Google Scholar
Markiewicz I, Strupczewski WG, Kochanek K (2010) On accuracy of upper quantiles estimation. Hydrol Earth Syst Sci 14:2167–2175. doi:10.5194/hess-14-2167-2010
Article
Google Scholar
Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Science 319:573–574
Article
Google Scholar
Nelder JA, Wedderburn RWM (1972) Generalized linear model. J R Stat Soc Series A (General) 135(3):370–384
Article
Google Scholar
Osorio JDG, Galiano SGG (2012) Non-stationary analysis of dry spells in monsoon season of Senegal River Basin using data from Regional Climate Models (RCMs). J Hydrol 450–451:82–92. doi:10.1016/j.jhydrol.2012.05.029
Article
Google Scholar
R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN: 3-900051-07-0
Rasmussen PE (2001) Generalized probability weighted moments: application to the generalized Pareto distribution. Water Resour Res 17(6):1745–1751
Article
Google Scholar
Regulation (2007) Ordinance of the Minister of the Environment of 20 April 2007 on the technical conditions to be met by hydrotechnical structures and their location. Journal of Laws No. 86 of 2007, item 57 (in Polish)
Regulations for computation of the greatest annual discharges for given probability of occurrence to design engineering structures and technical equipment for water management in the field of hydraulic engineering (1969) Central Office of Water Management, Warsaw (in Polish)
Rigby RA, Stasinopoulos DM (1996a) A semi-parametric additive model for variance heterogeneity. Statist Comput 6:57–65
Article
Google Scholar
Rigby RA, Stasinopoulos DM (1996b) Mean and dispersion additive models. In: Hardle W, Schimek MG (eds) Statistical theory and computational aspects of smoothing. Physica-Verlag, Heidelberg, pp 215–230
Chapter
Google Scholar
Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape. Appl Stat 54:507–554. doi:10.1111/j.1467-9876.2005.00510
Google Scholar
Rigby RA, Stasinopoulos DM, Heller G, Voudouris V (2014) The distribution toolbox of GAMLSS. http://www.gamlss.org/wp-content/uploads/2014/10/distributions.pdf. Accessed 14 Apr 2016
Serinaldi F, Kilsby CG (2015) Stationarity is undead: uncertainty dominates the distribution of extremes. Adv Water Resour 77:17–36. doi:10.1016/j.advwatres.2014.12.013
Article
Google Scholar
Solomon S, Daniela JS, Todd JS, Murphy DM, Plattner G-K, Knutti R, Friedlingstein P (2010) Persistence of climate changes due to a range of greenhouse gases. PNAS 107(43):18354–18359. doi:10.1073/pnas.1006282107
Article
Google Scholar
Stasinopoulos DM, Rigby RA (2007) Generalized additive models for location scale and shape (GAMLSS) in R. J Stat Softw 23(7):1–46
Article
Google Scholar
Stasinopoulos DM, Rigby RA, Akantziliotou C (2008) Introductions on how to use the package in R, 2nd edn. http://www.gamlss.org/wp-content/uploads/2013/01/gamlss-manual.pdf. Accessed 16 Mar 2016
Strupczewski WG, Kaczmarek Z (2001) Non-stationary approach to at-site flood frequency modelling. Part II. Weighted least squares estimation. J Hydrol 248(1–4):143–151. doi:10.1016/S0022-1694(01)00398-5
Article
Google Scholar
Strupczewski WG, Singh VP, Feluch W (2001a) Non-stationary approach to at-site flood frequency modelling. Part I. Maximum likelihood estimation. J Hydrol 248(1–4):123–142. doi:10.1016/S0022-1694(01)00397-3
Article
Google Scholar
Strupczewski WG, Singh VP, Mitosek HT (2001b) Non-stationary approach to at-site flood frequency modelling. Part III. Flood analysis of Polish rivers. J Hydrol 248(1–4):152–167. doi:10.1016/S0022-1694(01)00399-7
Article
Google Scholar
Strupczewski WG, Markiewicz I, Kochanek K, Singh VP (2008) Short walk into two-shape parameter flood frequency distributions. In: VP Singh (ed) Hydrology and hydraulics. Water Resources Publications, Littleton, pp 669–716
Google Scholar
Strupczewski WG, Kochanek K, Feluch W, Bogdanowicz E, Singh VP (2009) On seasonal approach to nonstationary flood frequency analysis. Phys Chem Earth 34(10):612–618
Article
Google Scholar
Strupczewski WG, Kochanek K, Bogdanowicz E, Markiewicz I (2011) On seasonal approach to flood frequency modelling, Part I: flood frequency analysis of Polish rivers. Hydrol Process 26:705–716. doi:10.1002/hyp.8179
Article
Google Scholar
Strupczewski WG, Kochanek K, Bogdanowicz E, Markiewicz I, Feluch W (2015) Comparison of two nonstationary flood frequency analysis methods within the context of the variable regime in the representative polish rivers. Acta Geoph 64(1):206–236. doi:10.1515/acgeo-2015-0070
Google Scholar
Villarini G, Serinaldi F, Smith JA, Krajewski WF (2009a) On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour Res 45:1–17
Google Scholar
Villarini G, Smith JA, Serinaldi F, Bales J, Bates PD, Krajewski WF (2009b) Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Adv Water Resour 32:1255–1266. doi:10.1029/2008WR007645
Article
Google Scholar
Villarini G, Vecchi GA, Smith JA (2010a) Modeling the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon Weather Rev 138:2681–2705
Article
Google Scholar
Villarini G, Smith JA, Napolitano F (2010b) Nonstationary modelling of a long record of rainfall and temperature over Rome. Adv Water Resour 33:1256–1267
Article
Google Scholar
Villarini G, Smith JA, Serinaldi F, Ntelekos AA, Schwarz U (2012) Analyses of extreme flooding in Austria over the period 1951–2006. Int J Climatol 32:1178–1192. doi:10.1002/joc.2331
Article
Google Scholar
Vojejkov AD (1884) Climates of the globe and Russia in particular, St Petersburg
Vormoor K, Lawrence D, Heistermann M, Bronstert A (2015) Climate change impacts on the seasonality and generation processes of floods—projections and uncertainties for catchments with mixed snowmelt/rainfall regimes. Hydrol Earth Syst Sci 19:913–931. doi:10.5194/hess-19-913-2015
Article
Google Scholar
Wallis JR, Matalas NC, Slack JR (1974) Just a moment! Water Resour Res 10(2):211–219. doi:10.1029/WR010i002p00211
Article
Google Scholar
Zhang D, Yan D, Wang YC, Lu F, Liu S (2015) GAMLSS-based nonstationary modeling of extreme precipitation in Beijing–Tianjin–Hebei region of China. Nat Hazards 77(2):1037–1053. doi:10.1007/s11069-015-1638-5
Article
Google Scholar