Skip to main content
Log in

Kinsenoside: A Promising Bioactive Compound from Anoectochilus Species

  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Kinsenoside is a main active component isolated from plants of the genus Anoectochilus, and exhibits many biological activities and pharmacological effects, including hepatoprotective, anti-hyperglycemic, anti-hyperliposis, anti-inflammatory, vascular protective and anti-osteoporosis effects and so on, which is contributing to its promising potency in disease treatments. This review aims to recapitulate the pharmacological functions of kinsenoside, as well as its source, extraction, identification, quantitative analysis, pharmacokinetics, synthesis and patent information. The data reported in this work can confirm the therapeutic potential of kinsenoside and provide useful information for further new drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shao Q, Wang H, Guo H, et al. Effects of Shade Treatments on Photosynthetic Characteristics, Chloroplast Ultrastructure, and Physiology of Anoectochilus roxburghii. PLoS One, 2014,9(2): e85 996

    Google Scholar 

  2. Budluang P, Pitchakarn P, Ting P, et al. Anti-inflammatory and anti-insulin resistance activities of aqueous extract from Anoectochilus burmannicus. Food Sci Nutr, 2017, 5(3): 486–496

    Article  PubMed  CAS  Google Scholar 

  3. Du XM, Toyokichi Y, Yukihiro S. Butanoic acid glucoside composition of whole body and in vitro plantlets of Anoectochilus formosanus. Phytochemistry, 1998, 49(7): 1925–1928

    Article  CAS  Google Scholar 

  4. Ito A, Kasai R, Yamasaki K, et al. Aliphatic and aromatic glucosides from Anoectochilus koshunensis. Phytochemistry, 1993, 33(5): 1133–1137

    Article  CAS  Google Scholar 

  5. Wang J, Wang H, Zhang A, et al. Recent advances in kinsenoside. Chin Hosp Pharm, 2015, 35(19): 1795–1798

    CAS  Google Scholar 

  6. Jiangsu New Medical College. Dictionary of the Traditional Chinese Medicines, Shanghai: Shanghai Scientific Technologic Publishing House, 1986:2283–2286.

  7. Shih CC, Wu YW, Lin WC. Aqueous extract of Anoectochilus formosanus attenuate hepatic fibrosis induced by carbon tetrachloride in rats. Phytomedicine, 2005, 12(6-7): 453–460

    Article  PubMed  CAS  Google Scholar 

  8. Du XM, Sun NY, Hayashi J. Hepatoprotective and antihyperliposis activities of in vitro cammed Anoectochilus formosanus. Phytother Res, 2003,17(1): 30–33

    Article  PubMed  Google Scholar 

  9. Chen Z, Huang ZQ. Studies on the hypoglycemic effect of the aqueous extractive of Anoectochilus roxburghii. Pharmacol Clin Chin Mater Med, 2000, 16:23–24

    Google Scholar 

  10. Tang J, Deng YR, Zhuo YR, et al. Advances in pharmacological activity of Anoectochilus roxburghii. Strait Pharm J, 2008, 20:77–79

    Google Scholar 

  11. Tseng CC, Shang HF, Wang LF, et al. Antitumor and immunostimulating effects of Anoectochilus formosanus Hayata. Phytomedicine Int J Phytother Phytopharm, 2006, 13:366–370

    Article  Google Scholar 

  12. Liu Q, Ai MQ, Li TY, et al. Protection of kinsenoside against AGEs-induced endothelial dysfunction in human umbilical vein endothelial cells. Life Sei, 2016, 162:102–107

    Article  CAS  Google Scholar 

  13. Hsiao HB, Wu JB, Lin H, et al. Kinsenoside isolated from Anoectochilus Formosanus suppresses LPS-stimulated inflammatory reactions in macrophages and endotoxin shock in mice. Shock, 2011, 35(2): 184–190

    Article  PubMed  CAS  Google Scholar 

  14. Cheng KT, Wang YS, Chou HC, et al. Kinsenoside-mediated lipolysis through an AMPK-dependent pathway in C3H10T1/2 adipocytes Roles of AMPK and PPARa in the lipolytic effect of kinsenoside. Phytomedicine, 2015, 22:641–647

    Article  PubMed  CAS  Google Scholar 

  15. Mei Y, Lu H, He L, et al. Kinsenoside and polysaccharide production by rhizome culture of Anoectochilus roxburghii in continuous immersion bioreactor systems. Plant Cell Tiss Organ Cult, 2017, 131:527–535

    Article  CAS  Google Scholar 

  16. Zhang Y, Cai J, Ruan H, et al. Antihyperglycemic activity of kinsenoside, a high yielding constituent from Anoectochilus roxburghii in streptozotocin diabetic rats. J Ethnopharm, 2007, 114:141–145

    Article  CAS  Google Scholar 

  17. Du X, Sun N, Tamura T, et al. Higher yielding isolation of kinsenoside in Anoectochilus and its antihyperliposis effect. Biol Pharm Bull, 2001,24(1): 65–69

    Article  PubMed  CAS  Google Scholar 

  18. Du XM, Irino N, Furusho N, et al. Pharmacologically active compounds in the Anoectochilus and Goodyera species. J Nat Med, 2008, 62(2): 132–148

    Article  PubMed  CAS  Google Scholar 

  19. Wu JB, Lin WL, Hsieh C, et al. The hepatoprotective activity of kinsenoside from Anoectochilus formosanus. Phytother Res, 2007, 21(1): 58–61

    Article  PubMed  CAS  Google Scholar 

  20. Hsieh WT, Tsai CT, Wu JB, et al. Kinsenoside, a high yielding constituent from Anoectochilus formosanus, inhibits carbon tetrachloride induced Kupffer cells mediated liver damage. J Ethnopharm, 2011,135,(2): 440–449

    Article  CAS  Google Scholar 

  21. Xiang M, Liu T, Tan W, et al. Effects of kinsenoside, a potential immunosuppressive drug for autoimmunehepatitis, on DCs-CD8+T cells communication. Hepatology, 2016, 64(6): 2135–2150

    Article  PubMed  CAS  Google Scholar 

  22. Liu ZL, Liu Q, Xiao B, et al. The vascular protective properties of kinsenoside isolated from Anoectochilus roxburghii under high glucose condition. Fitoterapia, 2013, 86:163–170

    Article  PubMed  CAS  Google Scholar 

  23. Qiao H, Wang B, Yin D, et al. Kinsenoside screening with a microfluidic chip attenuates gouty arthritis through inactivating NF-KB signaling in macrophages and protecting endothelial cells. Cell Death Dis, 2016,7(9): e2350

    Google Scholar 

  24. Hsiao HB, Hsieh CC, Wu JB, et al. Kinsenoside inhibits the inflammatory mediator release in a type-II collagen induced arthritis mouse model by regulating the T cells responses. BMC Complement Altern Med, 2016,16:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hsiao HB, Lin H, Wu JB, et al. Kinsenoside prevents ovariectomy-induced bone loss and suppresses osteoclastogenesis by regulating classical NF-KB pathways. Osteoporos Int, 2013, 24(5): 1663–1676

    Article  PubMed  CAS  Google Scholar 

  26. Hsieh LY, Chan HH, Hung HY, et al. A rapid quantitative 1H NMR analysis of kinsenoside and other bioactive principles from Anoectochilus formosanus. Anal Methods, 2016,8:5645

    Article  CAS  Google Scholar 

  27. Rehman S, Kim I, Choi M, et al. Evaluation of Metabolic Stability of Kinsenoside, an Antidiabetic Candidate, in Rat and Human Liver microsomes. Mass Spectr Lett, 2015, 6(2): 48–51

    Article  CAS  Google Scholar 

  28. Rehman S, Kim I, Choi M, et al. Development of a hydrophilic interaction liquid chromatography-tandem mass spectrometric method for the determination of kinsenoside, an antihyperlipidemic candidate, in rat plasma and its application to pharmacokinetic studies. J Pharm Bio Analy, 2016, 120:19–24

    Article  CAS  Google Scholar 

  29. Rehman S, Choi M, Kim I, et al. in Vitro Assessment of CYP-Mediated Drug Interactions for Kinsenoside, an Antihyperlipidemic Candidate. Molecules, 2016,21:800

    Article  CAS  Google Scholar 

  30. Saito S, Hasegawa T, Inaba M, et al. Combination of borane-dimethyl sulfide complex with catalytic sodium tetrahydroborate as a selective reducing agent for a-hydroxy esters. Versatile chiral building block from (s)-(-)-malic acid. Chem Lett, 1984, 13(8): 1389–1392

    Article  Google Scholar 

  31. Katsuhiko S, Nobuyuki S, Masanori Y, et al. Synthesis of 3-0-3-D-glucopyranosyl-(3R)-hydroxybutanolide (Kinsenoside) and 3-O-P-D-glucopyranosyl-(3S)-hydroxybutanolide (Goodyeroside A). J Carbohyd Chem, 2005,24 (1): 73–84

    Article  CAS  Google Scholar 

  32. Zhang X, Lin ZY, Chen QY, et al. The Total Synthesis of goodyerosideA. Chem Bull, 2004, 5:377–379

    CAS  Google Scholar 

  33. Zhang X, Lin ZY, Huang HH, et al. Novel total synthesis of kinsenoside. Hecheng Huaxue (Chinese), 2004, 12(4): 317–318

    CAS  Google Scholar 

  34. Zhang X, Huang HH, Chen QH. A novel total synthesis of kinsenoside and goodyeroside A relying on the efficient reaction of the chiral 2(5H)-furanones. J Asian Nat Prod Res, 2005, 7(5): 711–721

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Y, Xia Y, Lai Y, et al. Efficient Synthesis of Kinsenoside and Goodyeroside A by a Chemo-Enzymatic Approach. Molecules, 2014, 19:16950–16958

    Article  PubMed  CAS  Google Scholar 

  36. Lin W, Wu J, Ho H, etal. Pharmaceutical compositions comprising kinsenoside for hepatoprotection. US Pat Appl Publ, 2008,US20080241283A120081002

    Google Scholar 

  37. Lin W, Wu J, Hsiao H, et al. Method for inhibiting activation of macrophages, inhibiting formation of osteoclasts, inhibiting function of osteoclasts, and/or activating osteoblasts. US Pat Appl Publ, 2009,US20090306199A120091210

    Google Scholar 

  38. Zheng C, Wu Y, Wu J, et al. Application of kinsenoside in preparation of anti-fatigue drugs [Machine Translation], Faming Zhuanli Shenqing (Chinese), 2017,CN107496435A20171222

    Google Scholar 

  39. Tang T, Qiao H. Application of kinsenoside in protecting endothelial cells and treating gouty arthritis. Faming Zhuanli Shenqing (Chinese), 2017,CN106377536A20170208

    Google Scholar 

  40. Zhang Y. Preparation of kinsenoside derivatives as PTP1B inhibitors. Faming Zhuanli Shenqing (Chinese), 2009,CN101434625A20090520

    Google Scholar 

  41. Zhang Y, Xiang M. Kinsenoside having good therapeutic effect on autoimmune hepatitis (AIH), and its application and preparation method. Faming Zhuanli Shenqing (Chinese), 2017,CN106317142A20170111

    Google Scholar 

  42. Wu T, Chan H, Wu C, et al. Quantitative analysis method and separation method of kinsenoside. Faming Zhuanli Shenqing (Chinese), 2013,CN103308541A20130918

    Google Scholar 

  43. Liu Q, Liu Z. Quantitative analyzing and detecting method for kinsenoside. Faming Zhuanli Shenqing (Chinese), 2014,CN103983711A20140813

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-wen Zhang  (张锦文) or Yong-hui Zhang  (张勇慧).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Cx., Zhou, Q., Yuan, Z. et al. Kinsenoside: A Promising Bioactive Compound from Anoectochilus Species. CURR MED SCI 38, 11–18 (2018). https://doi.org/10.1007/s11596-018-1841-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-018-1841-1

Key words

Navigation