Skip to main content
Log in

Effect of mouse oocyte vitrification on mitochondrial membrane potential and distribution

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The effects of mouse oocyte vitrification on mitochondrial membrane potential and distribution were explored in this study. The collected mouse oocytes were randomly divided into vitrification and control groups. Ethylene glycol (EG) and dimethylsulphoxide (DMSO) were used as cryoprotectants in the vitrification group. The mitochondrial function and distribution in the oocytes were examined by using the fluorescent probes, JC-1 and Mito Tracker green. The results showed that the ratio of red to green fluorescence in mouse oocytes was significantly decreased after thawing in the vitrification group as compared with the control group (1.28 vs. 1.70, P<0.05). The percentage of polarized distribution of the mitochondria in oocytes was conspicuously reduced in the vitrification group when compared with the control group (31% vs. 63%, P<0.05). It was suggested that vitrification significantly affects the mitochondrial function and distribution in oocytes and reduces the potential of oocyte fertilization and embryo development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen C. Pregnancy after human oocyte cryopreservation. Lancet, 1986,1(8486):884–886

    Article  CAS  PubMed  Google Scholar 

  2. Dovey S. Oocyte cryopreservation: advances and drawbacks. Minerva Ginecol, 2012,64(6):485–500

    CAS  PubMed  Google Scholar 

  3. Borini A, Bianchi V. Cryopreservation of mature and immature oocytes. Clin Obstet Gynecol, 2010,53(4): 763–774

    Article  PubMed  Google Scholar 

  4. Lornage J, Salle B. Ovarian and oocyte cryopreservation. Curr Opin Obstet Gynecol, 2007,19(4):390–394

    Article  PubMed  Google Scholar 

  5. Kuwayama M, Vajta G, Kato O, et al. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online, 2005,11(3):300–308

    Article  PubMed  Google Scholar 

  6. Antinori M, Licata E, Dani G, et al. Cryotop vitrification of human oocytes results in high survival rate and healthy deliveries. Reprod Biomed Online, 2007,14(1):72–79

    Article  PubMed  Google Scholar 

  7. Homburg R, van der Veen F, Silber SJ. Oocyte vitrification—women’s emancipation set in stone. Fertil Steril, 2009,91(4 Suppl):1319–1320

    Article  PubMed  Google Scholar 

  8. Boldt J. Current results with slow freezing and vitrification of the human oocyte. Reprod Biomed Online, 2011,23(3):314–322

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Zhu G, Li X, et al. Experimental study on meiotic spindles and chromosomes of mouse mature (M II) stage oocytes under laser scanning confocal microscopy. J Huazhong Univ Sci Technol [Med Sci], 2006,26(3): 353–355

    Article  Google Scholar 

  10. Berthelot-Ricou A, Perrin J, di Giorgio C, et al. Genotoxicity assessment of mouse oocytes by comet assay before vitrification and after warming with three vitrification protocols. Fertil Steril, 2013,100(3):882–888

    Article  CAS  PubMed  Google Scholar 

  11. Ou XH, Li S, Wang ZB, et al. Maternal insulin resistance causes oxidative stress and mitochondrial dysfunction in mouse oocytes. Hum Reprod, 2012,27(7):2130–2145

    Article  CAS  PubMed  Google Scholar 

  12. Yongsheng J, Xiaoyun M, Xiaoli W, et al. Antitumor activity of erythromycin on human neuroblastoma cell line (SH-SY5Y). J Huazhong Univ Sci Technol [Med Sci], 2011,31(1):33–38

    Article  Google Scholar 

  13. Reers M, Smiley ST, Mottola-Hartshorn C, et al. Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol, 1995,260:406–417

    Article  CAS  PubMed  Google Scholar 

  14. Gosden RG. Fertility preservation: definition, history, and prospect. Semin Reprod Med, 2009,27(6):433–437

    Article  PubMed  Google Scholar 

  15. Herrero L, Martinez M, Garcia-Velasco JA. Current status of human oocyte and embryo cryopreservation. Curr Opin Obstet Gynecol, 2011,23(4):245–250

    PubMed  Google Scholar 

  16. Edgar DH, Gook DA. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos. Hum Reprod Update, 2012,18(5): 536–554

    Article  PubMed  Google Scholar 

  17. Smith GD, Serafini PC, Fioravanti J, et al. Prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification. Fertil Steril, 2010,94(6):2088–2095

    Article  PubMed  Google Scholar 

  18. Nagai S, Mabuchi T, Hirata S, et al. Oocyte mitochondria: strategies to improve embryogenesis. Hum Cell, 2004,17 (4):195–201

    Article  PubMed  Google Scholar 

  19. Gualtieri R, Iaccarino M, Mollo V, et al. Slow cooling of human oocytes: ultrastructural injuries and apoptotic status. Fertil Steril, 2009,91(4):1023–1034

    Article  PubMed  Google Scholar 

  20. Eichenlaub-Ritter U, Wieczorek M, Luke S, et al. Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions. Mitochondrion, 2011,11(5):783–796

    Article  CAS  PubMed  Google Scholar 

  21. Brevini TA, Cillo F, Antonini S, et al. Cytoplasmic remodelling and the acquisition of developmental competence in pig oocytes. Anim Reprod Sci, 2007,98(1–2): 23–38

    Article  CAS  PubMed  Google Scholar 

  22. Li R, Albertini DF. The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Biol, 2013,14(3):141–152

    Article  CAS  PubMed  Google Scholar 

  23. Deng WP, Ren ZR. Mitochondrial and oocyte development. Yi Chuan (Chinese), 2007,29(12):1429–1433

    CAS  Google Scholar 

  24. Katayama M, Zhong Z, Lai L, et al. Mitochondrial distribution and microtubule organization in fertilized and cloned porcine embryos: implications for developmental potential. Dev Biol, 2006,299(1):206–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Li Y, Feng HL, Cao YJ, et al. Confocal microscopic analysis of the spindle and chromosome configurations of human oocytes matured in vitro. Fertil Steril, 2006,85(4): 827–832

    Article  PubMed  Google Scholar 

  26. Yin H, Duffy DM, Gosden RG. Comparative maturation of cynomolgus monkey oocytes in vivo and in vitro. Reprod Biol Endocrinol, 2006,4:14

    Article  PubMed Central  PubMed  Google Scholar 

  27. Torner H, Alm H, Kanitz W, et al. Effect of initial cumulus morphology on meiotic dynamic and status of mitochondria in horse oocytes during IVM. Reprod Domest Anim, 2007,42(2):176–183

    Article  CAS  PubMed  Google Scholar 

  28. Takahashi T, Hammett MF, Cho MS. Multifaceted freezing injury in human polymorphonuclear cells at high subfreezing temperatures. Cryobiology, 1985,22(3):215–236

    Article  CAS  PubMed  Google Scholar 

  29. Lovelock LE. The haemolysis of human red blood cells by freezing and thawing. Biochim Biophys Acta, 1953,10:414–426

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-feng Li  (李豫峰).

Additional information

This project is supported by the Foundation of Hubei Provincial Health Department, China (No. JX5A02).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, T., Guo, N., Tan, Mh. et al. Effect of mouse oocyte vitrification on mitochondrial membrane potential and distribution. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 34, 99–102 (2014). https://doi.org/10.1007/s11596-014-1238-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-014-1238-8

Key words

Navigation