Skip to main content
Log in

Antitumor activity of erythromycin on human neuroblastoma cell line (SH-SY5Y)

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Antitumor effects of erythromycin and the related mechanism were investigated in the present study. Neuroblastoma cells (SH-SY5Y) were exposed to erythromycin at different concentrations for different durations. Cell proliferation was measured by cell counting, and cell viability was examined by MTT assay. Cell cycle phase distribution and the cytosolic calcium level were detected by flow cytometry. Mitochondrial membrane potential was measured by the JC-1 probe staining and fluorescent microscopy. The expression of an oncogene (c-Myc) and a tumor suppressor [p21 (WAF1/Cip1)] proteins was analyzed by using Western blotting. Erythromycin could inhibit the proliferation of SH-SY5Y cells in a concentration- and time-dependent manner. The cell cycle was arrested at S phase. Mitochondrial membrane potential collapsed and the cytosolic calcium was overloaded in SH-SY5Y cells when treated with erythromycin. The expression of c-Myc protein was down-regulated, while that of p21 (WAF1/Cip1) protein was up-regulated. It was concluded that erythromycin could restrain the proliferation of SH-SY5Y cells. The antitumor mechanism of erythromycin might involve regulating the expression of c-Myc and p21 (WAF1/Cip1) proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neu HC. The development of macrolides: clarithromycin in perspective. J Antimicrob Chemother, 1991, 27(Suppl A):1–9

    CAS  PubMed  Google Scholar 

  2. Reich C. Erythromycin as an aid in the management of aleukemic myeloblastic leukemias. N Y State J Med, 1954,54(15):2208–2209

    CAS  PubMed  Google Scholar 

  3. Hofsli E, Nissen-Meyer J. Reversal of drug resistance by erythromycin: erythromycin increases the accumulation of actinomycin D and doxorubicin in multidrug-resistant cells. Int J Cancer, 1989,44(1):149–154

    Article  CAS  PubMed  Google Scholar 

  4. Hamada K, Kita E, Sawaki M, et al. Antitumor effect of erythromycin in mice. Chemotherapy, 1995,41(1):59–69

    Article  CAS  PubMed  Google Scholar 

  5. Volberg WA, Koci BJ, Su W, et al. Blockade of human cardiac potassium channel human ether-a-go-go-related gene (HERG) by macrolide antibiotics. J Pharmacol Exp Ther, 2002,302(1):320–327

    Article  CAS  PubMed  Google Scholar 

  6. Park J R, Eggert A, Caron H. Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin North Am, 2010,24(1):65–86

    Article  PubMed  Google Scholar 

  7. Hahn WC, Weinberg RA. Modeling the molecular circuitry of cancer. Nat Rev Cancer, 2002,2(5):331–341

    Article  CAS  PubMed  Google Scholar 

  8. Gorlov IP, Byun J, Gorlova OY, et al. Candidate pathways and genes for prostate cancer: a meta-analysis of gene expression data. BMC Med Genomics, 2009,2:48

    Article  PubMed  Google Scholar 

  9. Gearhart J, Pashos EE, Prasad MK. Pluripotency redux—Advances in stem-cell research. N Engl J Med, 2007,357(15):1469–1472

    Article  CAS  PubMed  Google Scholar 

  10. Gustafson WC, Weiss WA. Myc proteins as therapeutic targets. Oncogene, 2010,29(9):1249–1259

    Article  CAS  PubMed  Google Scholar 

  11. Poluha W, Poluha DK, Chang B, et al. The cyclin-dependent kinase inhibitor p21 (WAF1) is required for survival of differentiating neuroblastoma cells. Mol Cell Biol, 1996,16(4):1335–1341

    CAS  PubMed  Google Scholar 

  12. Mckenzie PP, Danks MK, Kriwacki RW, et al. P21Waf1/Cip1 dysfunction in neuroblastoma: a novel mechanism of attenuating G0–G1 cell cycle arrest. Cancer Res, 2003,63(13):3840–3844

    CAS  PubMed  Google Scholar 

  13. Seoane J, Le HV, Massague J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature, 2002,419(6908): 729–734

    Article  CAS  PubMed  Google Scholar 

  14. June CH, Moore JS. Measurement of intracellular ions by flow cytometry. Curr Protoc Immunol, 2004, Chapter 5:Unit 5.5

  15. Hu Y, Xia XY, Pan LJ, et al. Evaluation of sperm mitochondrial membrane potential in varicocele patients using JC-1 fluorescent staining. Zhonghua Nan Ke Xue (Chinese) 2009,15(9):792–795.

    Google Scholar 

  16. Lovmar M, Nilsson K, Vimberg V, et al. The molecular mechanism of peptide-mediated erythromycin resistance. J Biol Chem, 2006,281(10):6742–6750

    Article  CAS  PubMed  Google Scholar 

  17. Chen SZ, Jiang M, Zhen YS. HERG K+ channel expression-related chemosensitivity in cancer cells and its modulation by erythromycin. Cancer Chemother Pharmacol, 2005,56(2):212–220

    Article  CAS  PubMed  Google Scholar 

  18. Baumann S, Fas SC, Giaisi M, et al. Wogonin preferentially kills malignant lymphocytes and suppresses T-cell tumor growth by inducing PLCgamma1- and Ca2+-dependent apoptosis. Blood, 2008,111(4): 2354–2363

    Article  CAS  PubMed  Google Scholar 

  19. Dick JE. Stem cell concepts renew cancer research. Blood, 2008,112(13):4793–4807

    Article  CAS  PubMed  Google Scholar 

  20. Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol, 1999,19(1): 1–11

    CAS  PubMed  Google Scholar 

  21. Pelengaris S, Khan M, Evan G. c-MYC: more than just a matter of life and death. Nat Rev Cancer, 2002, 2(10):764–776

    Article  CAS  PubMed  Google Scholar 

  22. Li F, Wang Y, Zeller KI, et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol, 2005,25(14):6225–6234

    Article  CAS  PubMed  Google Scholar 

  23. Gao P, Tchernyshyov I, Chang TC, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009, 458(7239):762–765

    Article  CAS  PubMed  Google Scholar 

  24. Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res, 2009,15(21):6479–6483

    Article  CAS  PubMed  Google Scholar 

  25. Dominguez-Sola D, Ying CY, Grandori C, et al. Non-transcriptional control of DNA replication by c-Myc. Nature, 2007,448(7152):445–451

    Article  CAS  PubMed  Google Scholar 

  26. Dai MS, Jin Y, Gallegos JR, et al. Balance of Yin and Yang: ubiquitylation-mediated regulation of p53 and c-Myc. Neoplasia, 2006,8(8):630–644

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Jianquan  (郑建全).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yongsheng, J., Xiaoyun, M., Xiaoli, W. et al. Antitumor activity of erythromycin on human neuroblastoma cell line (SH-SY5Y). J. Huazhong Univ. Sci. Technol. [Med. Sci.] 31, 33–38 (2011). https://doi.org/10.1007/s11596-011-0146-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-011-0146-4

Key words

Navigation