Skip to main content
Log in

Ultraviolet Photodetector based on Sr2Nb3O10 Perovskite Nanosheets

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Liquid-phase exfoliation was employed to synthesize Sr2Nb3O10 perovskite nanosheets with thicknesses down to 1.76 nm. Transmission electron microscopy (TEM), atomic force microscope (AFM), X-ray photoelectron spectrometer (XPS), and other characterization techniques were used to evaluate the atomic structure and chemical composition of the exfoliated nanosheets. A UV photodetector based on individual Sr2Nb3O10 nanosheets was prepared to demonstrate the application of an ultraviolet (UV) photodetector. The UV photodetector exhibited outstanding photocurrent and responsivity with a responsivity of 3 × 105 A·W−1 at 5 V bias under 280 nm illumination, a photocurrent of 60 nA, and an on/off ratio of 3 × 102.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang W, Hu K, Teng F, et al. High-Performance Silicon-Compatible Large-Area UV-to-Visible Broadband Photodetector Based on Integrated Lattice-Matched Type II Se/n-Si Heterojunctions[J]. Nano Letters, 2018, 18(8): 4 697–4 703

    Article  CAS  Google Scholar 

  2. Cai S, Xu X, Yang W, et al. Materials and Designs for Wearable Photodetectors[J]. Advanced Materials, 2019, 31(18): 1 808 138

    Article  Google Scholar 

  3. Kaur D, Kumar M. A Strategic Review on Gallium Oxide Based Deep-Ultraviolet Photodetectors: Recent Progress and Future Prospects[J]. Advanced Optical Materials, 2021, 9(9): 2 002 160

    Article  CAS  Google Scholar 

  4. Zhang Y, Li S, Li Z, et al. High-Performance Two-Dimensional Perovskite Ca2Nb3O10 UV Photodetectors[J]. Nano Letters, 2021, 21(1): 382–388

    Article  CAS  PubMed  Google Scholar 

  5. Virot L, Benedikovic D, Szelag B, et al. Integrated Waveguide PIN Photodiodes Exploiting Lateral Si/Ge/Si Heterojunction[J]. Optics Express, 2017, 25(16): 19 487–19 496

    Article  CAS  Google Scholar 

  6. Tian H, Hu A, Liu Q, et al. Interface-Induced High Responsivity in Hybrid Graphene/GaAs Photodetector[J]. Advanced Optical Materials, 2020, 8(8): 1 901 741

    Article  CAS  Google Scholar 

  7. Rana AK, Kumar M, Ban DK, et al. Enhancement in Performance of Transparent p-NiO/n-ZnO Heterojunction Ultrafast Self-Powered Photodetector via Pyro-Phototronic Effect[J]. Advanced Electronic Materials, 2019, 5(8): 1900438

    Article  Google Scholar 

  8. Ouyang W, Chen J, Shi Z, et al. Self-powered UV Photodetectors Based on ZnO Nanomaterials[J]. Applied Physics Reviews, 2021, 8(3): 031 315

    Article  CAS  Google Scholar 

  9. Wang S, Wu C, Wu F, et al. Flexible, Transparent, and Self-Powered Deep Ultraviolet Photodetector based on Ag NWs/Amorphous Gallium Oxide Schottky Junction for Wearable Devices[J]. Sensors and Actuators A: Physical, 2021, 330: 112 870

    Article  CAS  Google Scholar 

  10. Zhou Y, Qiu X, Wan ZA, et al. Halide-exchanged Perovskite Photodetectors for Wearable Visible-blind Ultraviolet Monitoring[J]. Nano Energy, 2022, 100: 107 516

    Article  CAS  Google Scholar 

  11. Kim T, Jeong S, Kim KH, et al. Engineered Surface Halide Defects by Two-Dimensional Perovskite Passivation for Deformable Intelligent Photodetectors[J]. ACS Appl Mater Interfaces, 2022, 14(22): 26 004–26 013

    Article  CAS  Google Scholar 

  12. Li Z, Hong E, Zhang X, et al. Perovskite-Type 2D Materials for High-Performance Photodetectors[J]. The Journal Physical Chemistry Letters, 2022, 13(5): 1 215–1 225

    Article  CAS  Google Scholar 

  13. Pei Y, Chen R, Xu H, et al. Recent Progress About 2D Metal Dichalcogenides: Synthesis and Application in Photodetectors[J]. Nano Research, 2020, 14(6): 1 819–1 839

    Article  Google Scholar 

  14. Zhang Y, Liu J, Wang Z, et al. Synthesis, Properties, and Optical Applications of Low-Dimensional Perovskites[J]. Chemical Communications, 2016, 52(94): 13 637–13 655

    Article  CAS  Google Scholar 

  15. Ida S, Okamoto Y, Matsuka M, et al. Preparation of Tantalum-Based Oxynitride Nanosheets by Exfoliation of a Layered Oxynitride, Cs-Ca2Ta3O10-xNy, and Their Photocatalytic Activity[J]. Journal of the American Chemical Society, 2012, 134(38): 15 773–15 782

    Article  CAS  Google Scholar 

  16. Li BW, Osada M, Kim YH, et al. Atomic Layer Engineering of High-kappa Ferroelectricity in 2D Perovskites[J]. Journal of the American Chemical Society, 2017, 139(31): 10 868–10 874

    Article  CAS  Google Scholar 

  17. Hase I, Nishihara Y. Electronic Structure of The Superconducting Layered Perovskite Niobate[J]. Physical Review B, 1998, 58(4): 1 707–1 709

    Article  Google Scholar 

  18. Moritomo Y, Asamitsu A, Kuwahara H, et al. Giant Magnetoresistance of Manganese Oxides with a Layered Perovskite Structure[J]. Nature, 1996, 380(6570): 141–144

    Article  CAS  Google Scholar 

  19. Benedek NA, Rondinelli JM, Djani H, et al. Understanding Ferroelectricity in Layered Perovskites: New Ideas and Insights from Theory and Experiments[J]. Dalton Transactions, 2015, 44(23): 10 543–10 558

    Article  CAS  Google Scholar 

  20. Xu FF, Ebina Y, Bando Y, et al. Structural Characterization of (TBA, H)Ca2Nb3O10 Nanosheets Formed by Delamination of a Precursor-Layered Perovskite[J]. The Journal of Physical Chemistry B, 2003, 107(36): 9 638–9 645

    Article  CAS  Google Scholar 

  21. Maeda K, Sahara G, Eguchi M, et al. Hybrids of a Ruthenium(II) Polypyridyl Complex and a Metal Oxide Nanosheet for Dye-Sensitized Hydrogen Evolution with Visible Light: Effects of the Energy Structure on Photocatalytic Activity[J]. ACS Catalysis, 2015, 5(3): 1 700–1 707

    Article  CAS  Google Scholar 

  22. Maeda K, Eguchi M, Oshima T. Perovskite Oxide Nanosheets with Tunable Band-Edge Potentials and High Photocatalytic Hydrogen-Evolution Activity[J]. Angewandte Chemie-International Edition, 2014, 53(48): 13 164–13 168

    Article  CAS  Google Scholar 

  23. Lee W-H, Im M, Kweon S-H, et al. Synthesis of Sr2Nb3O10 Nanosheets and Their Application for Growth of Thin Film Using an Electrophoretic Method[J]. Journal of the American Ceramic Society, 2017, 100(3): 1 098–1 107

    Article  CAS  Google Scholar 

  24. Xu P, Milstein TJ, Mallouk TE. Flat-Band Potentials of Molecularly Thin Metal Oxide Nanosheets[J]. ACS Applied Materials & Interfaces, 2016, 8(18): 11 539–11 547

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baowen Li  (李宝文).

Ethics declarations

All authors declare that there are no competing interests.

Additional information

Funded by the National Natural Science Foundation of China (Nos. 51872214 and 52172124) and the Fundamental Research Funds for the Central Universities (WUT: 2021III019JC and 2018III041GX)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Jia, M., Liang, Q. et al. Ultraviolet Photodetector based on Sr2Nb3O10 Perovskite Nanosheets. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 39, 282–287 (2024). https://doi.org/10.1007/s11595-024-2881-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-024-2881-y

Key words

Navigation