Skip to main content
Log in

Structure and Optical Properties of ZnO Thin Films Prepared by the Czochralski Method

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The zinc oxide seed film was coated on conductive glass (FTO) substrate by the Czochralski method, Zinc acetate and hexamethylenetetramine were used as raw materials to prepare growth solution, and then ZnO film was prepared by a low-temperature solution method. The effects of annealing temperature on the morphology, structure, stress and optical properties of ZnO films were studied. The thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible absorption spectra (UV — vis), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS). The results show that the films are ZnO nanorods. With the increase of annealing temperature, the diameter of the rod increases, and the nanorods tend to be oriented. The band gap of the sample obtained from the light absorption spectra first increases and then decreases with the increase of annealing temperature. When the annealing temperature is 350 °C, the crystallinity of zinc oxide film is the highest, the band gap is close to the theoretical value of pure ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma Z H, Ren F Z, Ming X L, et al. Cu-Doped ZnO Electronic Structure and Optical Properties Studied by First-Principles Calculations and Experiments[J]. Materials, 2019, 12(1): 196

    Article  CAS  Google Scholar 

  2. Deng Y F, Ma Z H, Ren F Z, et al. Improved Photoelectric Performance of DSSCs Based on TiO2 Nanorod Array/Ni-doped TiO2 Compact Layer Composites Film[J]. J. Solid State Electrochem., 2019, 23: 3 031–3 041

    Article  CAS  Google Scholar 

  3. Deng Y F, Ma Z H, Ren F Z, et al. Enhanced Morphology and Photoelectric Properties of One-dimensional TiO2 Nanorod Array Films[J]. Chem. Phys. Lett., 2019, 724: 42–49

    Article  CAS  Google Scholar 

  4. Wu K X, Zha W S, Chen X. Photocatalytic Activity of TiO2 Coatings Fabricated on Al2O3 by Mechanical Coating Technique[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2021, 36(1): 1–5

    Article  Google Scholar 

  5. Zheng J H, Song J L, Jiang Q, et al. Optical Properties of Cu-doped ZnO Nanoparticles Experimental and First-Principles Theory Research[J]. J Mater Sci. Mater Electron., 2012, 23(8): 1 521–1 524

    Article  CAS  Google Scholar 

  6. Liu L Q, Cao G X, Hong K Q. Seed Free Growth of Aligned ZnO Nanowire Arrays on AZO Substrate[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2018, 33(6): 1 372–1 375

    Article  CAS  Google Scholar 

  7. Ran F Y, Tanemura M, Hayashi Y, et al. Effect of Substrate Temperature on the Room-Temperature Ferromagnetism of Cu-doped ZnO Film[J]. J. Cryst. Growth, 2009, 31: 4 270–4 274

    Article  Google Scholar 

  8. Lue J G, J. Dai J, Zhu J B, et al. Effect of Na Concentrations on Microstructure and Optical Properties of ZnO Films[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2011, 26(1): 23–27

    Article  CAS  Google Scholar 

  9. Yu L P. Development in p-type Doping of ZnO[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2012, 27(6): 1 184–1 187

    Article  CAS  Google Scholar 

  10. Zheng H R, Jiang Y R, Yang S Y, et al. ZnO Nanorods Array as Light Absorption Antenna for High-gain UV Photodetectors[J]. J. Alloy. Compd., 2020, 812: 152 158

    Article  CAS  Google Scholar 

  11. Bhogaita M, Devaprakasam D. Hybrid Photoanode of TiO2-ZnO Synthesized by Co-precipitation Route for Dye-sensitized Solar Cell using Phyllanthus Reticulatas Pigment Sensitizer[J]. Sol Energy., 2021, 214: 517–530

    Article  CAS  Google Scholar 

  12. Shanmuganathan G, Banu I B S, Krishnan S, et al. Influence of K-doping on the Optical Properties of ZnO Thin Films Grown by Chemical Bath Deposition Method[J]. J. Alloy. Compd., 2013, 562: 187–193

    Article  CAS  Google Scholar 

  13. Jang S, Son P, Kim J. K Doping Effect on Structural and Optical Properties of ZnO Nanorods Grown on Semipolar (1122) GaN Films Using a Hydrothermal Growth Method[J]. Opt. Mater. Express., 2015, 5: 1 621

    Article  CAS  Google Scholar 

  14. Keshtkar J, Vargas G, Roberto J, et al. Preparation of Rod-like Aluminum Doped Zinc Oxide Powders by Sol-gel Technique Using Metal Chlorides and Acetylacetone Precursors[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2018, 33(6): 1 293–1 297

    Article  CAS  Google Scholar 

  15. Yang J J, Fang Q Q, Wang B M, et al. ZnO Based Luminous and Diluted Magnetic Semiconductors Prepared by PVA Methods[J]. Chin. J. Lumin., 2006, 27(6): 939–943

    CAS  Google Scholar 

  16. Bharathi V, Sivakumar M, Udayabhaskar R, et al. Structural, Enhanced Local Vibrational and Fluorescence Properties in K-doped ZnO Nanostructures[J]. Appl. Phys. A, 2014, 116(1): 395–401

    Article  CAS  Google Scholar 

  17. Ma Z H, Ren F Z, Deng Y F, et al. Experimental and Theoretical Studies of KxZn1−xO[J]. Ceram. Int., 2020, 46: 763–767

    Article  CAS  Google Scholar 

  18. Qiu D J, Wu H Z, Feng A M, et al. Annealing Effects on the Microstructure and Photoluminescence Properties of Ni doped ZnO Films[J]. Appl. Surf. Sci., 2004, 222: 263–268

    Article  CAS  Google Scholar 

  19. Kadam A N, Kim T G, Shin D S, et al. Morphological Evolution of Cu Doped ZnO for Enhancement of Photocatalytic Activity[J]. J. Alloy. Compd., 2017, 710: 102–113

    Article  CAS  Google Scholar 

  20. Sonkera R K, Sikarwarb S, Sabhajeetb S R, et al. Spherical Growth of Nanostructures ZnO Based Optical Sensing and Photovoltaic Application[J]. Opt. Mater., 2018, 83: 342–347

    Article  Google Scholar 

  21. Guo L J, Ye Z Z, Huang J G. Influeruce of Pudeposition Annealing on Crytallinity of Zinc Oxide Flims[J]. Chin. J. Semicond., 2003, 24(7): 370–377

    Google Scholar 

  22. Kim S K, Kim S, Lee C H, et al. The Structural and Optical Behaviors of K-ZnO/Al2O3 (0001) Films[J]. Appl. Phys. Lett., 2004, 85(3): 419–421

    Article  CAS  Google Scholar 

  23. Ma Z H, Ren F Z, Deng Y F, et al. Structural, Electrochemical and Optical Properties of Ni Doped ZnO: Experimental and Theoretical Investigation[J]. Optik, 2020, 219: 165 204

    Article  CAS  Google Scholar 

  24. Trunk M, Venkatachalapathy V, Galeckas A, et al. Deep Level Related Photoluminescence in ZnMgO[J]. Appl. Phys. Lett., 2010, 97: 211 901

    Article  Google Scholar 

  25. Sun S, Wu P, Xing P. d0 Ferromagnetism in Undoped n and p-type In2O3 Firms[J]. Appl. Phys. Lett., 2012, 101: 132 417

    Article  Google Scholar 

  26. Deng Y F, Ma Z H, Ren F Z. Enhanced Photoelectronchemical Performance of TiO2 Nanorod Array Films Based on TiO2 Compact Layers Synthesized by a Two-step Method[J]. Rsc Adv., 2019, 9: 21 777–21 785

    Article  CAS  Google Scholar 

  27. Park C H, Zhang S B, Wei S H. Origin of p-type Doping Difficulty in ZnO: the Impurity Perspective[J]. Phys. Rev. B, 2002, 66: 073 202

    Article  Google Scholar 

  28. Dixit H, Saniz R, Lamoen D, et al. The Quasiparticle Band Structure of Zincblende and Rocksalt ZnO[J]. J. Phys. Condens. Mat., 2010, 22: 125 505

    Article  CAS  Google Scholar 

Download references

Funding

Funded by Henan International Science and Technology Cooperation Program (No.152102410035), and Ph D Research Startup Foundation of Henan University of Science and Technology(No.13480107)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengzhang Ren  (任凤章).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Ren, F. & Yang, Z. Structure and Optical Properties of ZnO Thin Films Prepared by the Czochralski Method. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 823–828 (2022). https://doi.org/10.1007/s11595-022-2602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2602-3

Key words

Navigation