Skip to main content
Log in

Fracture Behavior and Processing Deformation of C71500 Cupronickel Alloy during Hot Tensile Deformation

  • Metallic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The hot tensile deformation properties and microstructure evolution of high purity C71500 cupronickel alloy at 1 023–1 273 K and 0.000 1–0.1 s−1 strain rates were studied by uniaxial hot tensile deformation method. Based on the experimental data, the flow behavior, microstructure and fracture characteristics of the alloy were analyzed after considering the influence of different deformation parameters. The relationship between microstructure and high temperature (T⩾1 023 K) plasticity is discussed, and the fracture mechanism is revealed. The relationship between strain rate sensitivity coefficient and stress index and plastic deformation is discussed. The constitutive equation of the alloy is established by Johnson-Cook model. Based on the dynamic material model, the energy dissipation model is established, and Prasad’s instability criterion based on Ziegler’s expected rheological theory is used to predict the unstable region in the processing map. Processing map in hot tensile is analyzed to provide theoretical basis for different processing technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CINCERA S, BRESCIANI E. De-nickelification of 70/30 Cupronickel Tubing in a Cooling Heat Exchanger[J]. Journal of Failure Analysis & Prevention, 2012, 12(3): 300–304

    Article  Google Scholar 

  2. DROLENGA L J P, IJSSELING F P, KOLSTER B H. The Influence of Alloy Composition and Microstructure on the Corrosion Behaviour of Cu-Ni Alloys in Seawater[J]. Materials & Corrosion, 2015, 34(4): 167–178

    Article  Google Scholar 

  3. TORRES BAUTISTA B E, WIKIEŁ A J, DATSENKO I, et al. Influence of Extracellular Polymeric Substances (EPS) from Pseudomonas NCIMB 2021 on the Corrosion Behaviour of 70Cu-30Ni Alloy in Sea-water[J]. Journal of Electroanalytical Chemistry, 2015, 737: 184–197

    Article  CAS  Google Scholar 

  4. WEI M, YANG B, LIU Y, et al. Research Progress and Prospect on Erosion-Corrosion of Cu-Ni Alloy Pipe in Seawater[J]. Journal of Chinese Society for Corrosion & Protection, 2016, 36(6): 513–521

    Google Scholar 

  5. ZHANG D N, SHANGGUAN Q Q, XIE C J, et al. A Modified Johnson-Cook Model of Dynamic Tensile Behaviors for 7075-T6 Aluminum Alloy[J]. Journal of Alloys & Compounds, 2015, 619: 186–194

    Article  CAS  Google Scholar 

  6. LIN Y C, CHEN X M, LIU G. A Modified Johnson-Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel[J]. Materials Science & Engineering A, 2010, 527(26): 6980–6986

    Article  Google Scholar 

  7. CAO F, FEI X, XUE G. Hot Tensile Deformation Behavior and Microstructural Evolution of a Mg-9.3Li-1.79Al-1.61Zn Alloy[J]. Materials & Design, 2016, 92: 44–57

    Article  CAS  Google Scholar 

  8. EFTEKHARI M, FATA A, FARAJI G, et al. Hot Tensile Deformation Behavior of Mg-Zn-Al Magnesium Alloy Tubes Processed by Severe Plastic Deformation[J]. Journal of Alloys & Compounds, 2018, 742: 442–453

    Article  CAS  Google Scholar 

  9. AO D W, CHU X R, LIN S X, et al. Hot Tensile Behaviors and Microstructure Evolution of Ti-6Al-4V Titanium Alloy under Electropulsing[J]. Acta Metallurgica Sinica(English Letters), 2018, 31(12): 1287–1296

    Article  CAS  Google Scholar 

  10. REIS A G A, REIS D A P, ABDALLA A N J, et al. Hot Tensile Behavior and Fracture Characteristics of a Plasma Nitrided Maraging 300 Steel[J]. Materials Science Forum, 2017, 899: 436–441

    Article  Google Scholar 

  11. HUANG Y, LIU C, XIAO Z. Hot Tensile Deformation and Fracture Behaviours of Hastelloy C-276 Alloy[J]. Materials Science & Technology, 2017, 34: 1–8

    Google Scholar 

  12. CAI J, ZHANG X, WANG K, et al. Physics-Based Constitutive Model to Predict Dynamic Recovery Behavior of BFe10-1-2 Cupronickel Alloy during Hot Working[J]. High Temperature Materials & Processes, 2016, 35: 1–9

    Article  CAS  Google Scholar 

  13. JUN C, KUAISHE W, WEN W. Characterization of High Temperature Deformation Behavior of BFe10-1-2 Cupronickel Alloy Using Constitutive Equation and Processing Map[J]. Rare Metal Materials & Engineering, 2016, 45(10): 2549–2554

    Article  Google Scholar 

  14. SHI C, MAO W, CHEN X G. Evolution of Activation Energy During Hot Deformation of AA7150 Aluminum Alloy[J]. Materials Science & Engineering: A, 2013, 571: 83–91

    Article  CAS  Google Scholar 

  15. DENG J, LIN Y C, LI S-S, et al. Hot Tensile Deformation and Fracture Behaviors of AZ31 Magnesium Alloy[J]. Materials & Design, 2013, 49: 209–219

    Article  CAS  Google Scholar 

  16. LIN Y C, DENG J, JIANG Y-Q, et al. Effects of Initial δ Phase on Hot Tensile Deformation Behaviors and Fracture Characteristics of a Typical Ni-Based Superalloy[J]. Materials & Design, 2014, 55: 949–957

    Article  CAS  Google Scholar 

  17. ZHOU M, LIN Y C, DENG J, et al. Hot Tensile Deformation Behaviors and Constitutive Model of An Al-Zn-Mg-Cu Alloy[J]. Materials & Design, 2014, 59: 141–150

    Article  CAS  Google Scholar 

  18. GAO X, WU H-B, LIU M, et al. Dynamic Recovery and Recrystallization Behaviors of C71500 Copper-Nickel Alloy Under Hot Deformation[J]. Journal of Materials Engineering & Performance, 2020, 29(11): 7678–7692

    Article  Google Scholar 

  19. GEGEL H L, MALAS J C, GUNASEKERA J S, et al. Computer-aided Design of Extrusion Dies by Metal-flow Simulation[M]. AGARD Process Modeling Appl. to Metal Forming and Thermomech, 1984

  20. PRASAD Y V R K, GEGEL H L, DORAIVELU S M, et al. Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242 [J]. Metall Trans A, 1984, 15(10): 1883–1892

    Article  Google Scholar 

  21. GAO X, WU H, LIU M, et al. Processing Map of C71500 Copper-nickel Alloy and Application in Production Practice[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2020, 35(6): 1–12

    Article  Google Scholar 

  22. CHEN B, ZHOU W M, LI S, et al. Hot Compression Deformation Behavior and Processing Maps of Mg-Gd-Y-Zr Alloy[J]. Journal of Materials Engineering & Performance, 2013, 22(9): 2458–2466

    Article  CAS  Google Scholar 

  23. PRAGER W. On Ideal Locking Materials[J]. Transactions of The Society of Rheology, 1957, 1(1): 169–175

    Article  Google Scholar 

  24. LIN Y C, DING Y, CHEN M-S, et al. A New Phenomenological Constitutive Model for Hot Tensile Deformation Behaviors of a Typical Al-Cu-Mg Alloy[J]. Materials & Design, 2013, 52: 118–127

    Article  CAS  Google Scholar 

  25. WEN Z, GAO X, CHENG J, et al. Processing Map and Hot Deformation Behavior of Mo-Nb Single Crystals[J]. Rare Metal Materials & Engineering, 2018, 47(2): 485–490

    Article  Google Scholar 

  26. ZHONG T, RAO K P, PRASAD Y V R K, et al. Processing Maps, Microstructure Evolution and Deformation Mechanisms of Extruded AZ31-DMD During Hot Uniaxial Compression[J]. Materials Science & Engineering A, 2013, 559: 773–781

    Article  CAS  Google Scholar 

  27. RAO K P, ZHONG T, PRASAD Y V R K, et al. Hot Working Mechanisms in DMD-Processed Versus Cast AZ31-1 wt% Ca Alloy[J]. Materials Science & Engineering A, 2015, 644(8): 184–193

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huibin Wu  (武会宾).

Additional information

Funded by Ministry of Industry and Information Technology of the People’s Republic of China (No. TC170A2KN-8) and the National Natural Science Foundation of China (No. 51801149)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Wu, H., Liu, M. et al. Fracture Behavior and Processing Deformation of C71500 Cupronickel Alloy during Hot Tensile Deformation. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 407–415 (2021). https://doi.org/10.1007/s11595-021-2424-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-021-2424-8

Key words

Navigation