Skip to main content
Log in

Hot Compression Deformation Behavior and Processing Maps of Mg-Gd-Y-Zr Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hot compression deformation behavior and processing maps of the Mg-Gd-Y-Zr alloy were investigated in this paper. Compression tests were conducted at the temperature range from 300 to 450 °C and the strain rate range from 0.001 to 1.0 s−1. It is found that the flow stress behavior is described by the hyperbolic sine constitutive equation in which the average activation energy of 251.96 kJ/mol is calculated. Through the flow stress behavior, the processing maps are calculated and analyzed according to the dynamic materials model. In the processing maps, the variation of the efficiency of the power dissipation is plotted as a function of temperature and strain rate. The instability domains of flow behavior are identified by the maps. The maps exhibit a domain of dynamic recrystallization occurring at the temperature range of 375-450 °C and strain rate range of 0.001-0.03 s−1 which are the optimum parameters for hot working of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, and A. Pisch, Hardening Precipitation in a Mg-4Y-3RE Alloy, Acta Mater., 2003, 51, p 5335–5348

    Article  CAS  Google Scholar 

  2. Q. Li, Q. Wang, H. Zhou, X. Zeng, Y. Zhang, and W. Ding, High Strength Extruded Mg-5Zn-2Nd-1.5Y-0.6Zr-0.4Ca Alloy Produced by Electromagnetic Casting, Mater. Lett., 2005, 59, p 2549–2554

    Article  CAS  Google Scholar 

  3. B. Chen, D. Lin, X. Zeng, and C. Lu, Effects of Yttrium and Zinc Addition on the Microstructure and Mechanical Properties of Mg-Y-Zn Alloys, J. Mater. Sci., 2010, 45, p 2510–2517

    Article  CAS  Google Scholar 

  4. K. Yamada, Y. Okubo, M. Shiono, H. Watanabe, S. Kamado, and Y. Kojima, Alloy Development of High Toughness Mg-Gd-Y-Zn-Zr Alloys, Mater. Trans., 2006, 47, p 1066–1070

    Article  CAS  Google Scholar 

  5. S. He, X. Zeng, L. Peng, X. Gao, J. Nie, and W. Ding, Microstructure and Strengthening Mechanism of High Strength Mg-10Gd-2Y-0.5Zr Alloy, J. Alloys Compd., 2007, 427, p 316–323

    Article  CAS  Google Scholar 

  6. I. Aanthony Anyanwu, S. Kamado, and Y. Kojima, Creep Properties of Mg-Gd-Y-Zr Alloys, Mater. Trans., 2001, 42, p 1212–1218

    Article  Google Scholar 

  7. D. Lin, L. Wang, Y. Liu, J. Cui, and Q. Le, Effects of Plastic Deformation on Precipitation Behavior and Tensile Fracture Behavior of Mg-Gd-Y-Zr Alloy, Trans. Nonferrous Met. Soc. China, 2011, 21, p 2160–2167

    Article  CAS  Google Scholar 

  8. R. Wang, J. Dong, L.K. Fan, P. Zhang, and W.J. Ding, Microstructure and Mechanical Properties of Rolled Mg-12Gd-3Y-0.4Zr Alloy Sheets, Trans. Nonferrous Met. Soc. China, 2008, 18, p s189–s193

    Article  CAS  Google Scholar 

  9. Z. Zhang, Q. Pan, J. Zhou, X. Liu, and Q. Chen, Hot Deformation Behavior and Microstructural Evolution of Al-Zn-Mg-0.25Sc-Zr Alloy During Compression at Elevated Temperatures, Trans. Nonferrous Met. Soc. China, 2012, 22, p 1556–1562

    Article  CAS  Google Scholar 

  10. Y. Jia, F. Cao, Z. Ning, X. Sun, and J. Sun, Hot Deformation Behavior of Spray Formed Al-22Si-5Fe-3Cu-1Mg Alloy, Trans. Nonferrous Met. Soc. China, 2011, 21, p s299–s303

    Article  Google Scholar 

  11. S. Banerjee, P.S. Robi, A. Srinivasan, and L.P. Kumar, High Temperature Deformation Behavior of Al-Cu-Mg Alloys Micro-alloyed with Sn, Mater. Sci. Eng. A, 2010, 527, p 2498–2503

    Article  Google Scholar 

  12. L. Zhang, Z. Li, Q. Lei, W.T. Qiu, and H.T. Luo, Hot Deformation Behavior of Cu-8.0Ni-1.8Si-0.15Mg Alloy, Mater. Sci. Eng. A, 2011, 528, p 1641–1647

    Article  Google Scholar 

  13. H. Zhang, H. Zhang, and L. Li, Hot Deformation Behavior of Cu-Fe-P Alloys During Compression at Elevated Temperatures, J. Mater. Process. Technol., 2009, 209, p 2892–2896

    Article  CAS  Google Scholar 

  14. Z. Ding, S. Jia, P. Zhao, M. Deng, and K. Song, Hot Deformation Behavior of Cu-0.6Cr-0.03Zr Alloy During Compression at Elevated Temperatures, Mater. Sci. Eng. A, 2013, 570, p 87–91

    Article  CAS  Google Scholar 

  15. K.D. Bouzakis, G. Maliaris, and A. Tsouknidas, FEM Supported Semi-solid High Pressure Die Casting Process Optimization Based on Rheological Properties by Isothermal Compression Tests at Thixo Temperatures Extracted, Comput. Mater. Sci., 2012, 59, p 133–139

    Article  CAS  Google Scholar 

  16. B.-J. Lv, J. Peng, D.-W. Shi, A.-T. Tang, and F.-S. Pan, Constitutive Modeling of Dynamic Recrystallization Kinetics and Processing Maps of Mg-2.0Zn-0.3Zr Alloy Based on True Stress-Strain Curves, Mater. Sci. Eng. A, 2013, 560, p 727–733

    Article  CAS  Google Scholar 

  17. S. Anbuselvan and S. Ramanathan, Hot Deformation and Processing Maps of Extruded ZE41A Magnesium Alloy, Mater. Des., 2010, 31, p 2319–2323

    Article  CAS  Google Scholar 

  18. M. Meng, Z. Zhang, B. Zhang, and J. Dou, Flow Behaviors and Processing Maps of As-Cast And As-Homogenized AZ91 Alloy, J. Alloys Compd., 2012, 513, p 112–117

    Article  Google Scholar 

  19. Y. Xu, L. Hu, T. Deng, and L. Ye, Hot Deformation Behavior and Processing Map of As-Cast AZ61 Magnesium Alloy, Mater. Sci. Eng. A, 2013, 559, p 528–533

    Article  CAS  Google Scholar 

  20. N. Srinivasan, Y.V.R.K. Prasad, and K.P. Rao, Hot Deformation Behaviour of Mg-3Al Alloy—A Study Using Processing Map, Mater. Sci. Eng. A, 2008, 476, p 146–156

    Article  Google Scholar 

  21. L. Briottet, J. Jonas, and F. Montheillet, A Mechanical Interpretation of the Activation Energy of High-Temperature Deformation In Two-Phase Materials, Acta Mater., 1996, 44, p 1665–1672

    Article  Google Scholar 

  22. C. Sellars and W.J.M. Tegart, Relationship Between Strength and Structure in Deformation at Elevated Temperatures, Mem. Sci. Rev. Metall., 1966, 63, p 731–745

    CAS  Google Scholar 

  23. C. Zener and J. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32

    Article  Google Scholar 

  24. Y. Prasad and S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps, ASM International, Materials Park, 1997

    Google Scholar 

  25. Y. Prasad, H. Gegel, S. Doraivelu, J. Malas, J. Morgan, K. Lark, and D. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Mater. Trans. A, 1984, 15, p 1883–1892

    Article  Google Scholar 

  26. Y. Prasad, Recent Advances in the Science of Mechanical Processing, Indian J. Technol., 1990, 28, p 435–451

    CAS  Google Scholar 

  27. H.T. Zhou, Q.B. Li, Z.K. Zhao, Z.C. Liu, S.F. Wen, and Q.D. Wang, Hot Workability Characteristics of Magnesium Alloy AZ80—A Study Using Processing Map, Mater. Sci. Eng. A, 2010, 527, p 2022–2026

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 51171107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Zhou, WM., Li, S. et al. Hot Compression Deformation Behavior and Processing Maps of Mg-Gd-Y-Zr Alloy. J. of Materi Eng and Perform 22, 2458–2466 (2013). https://doi.org/10.1007/s11665-013-0568-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0568-1

Keywords

Navigation