Skip to main content
Log in

Transformation Characteristics and Microstructure of Rail under Low Stress during Continuous Cooling

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

To obtain a better understanding the thermal stress of a rail, the thermal simulator was used to measure the expansion curves of different stresses loaded during the continuous cooling process of U75V rail. The transformation plasticity model was established. The experimental results show that stress can accelerate the transformation process of pearlite. While the same cooling rate is accelerated with the increase of stress, the transformation process of pearlite is accelerated, and the proportion of plastic strain transformation in total strain increases. At the same stress, the process of transformation of pearlite decreases with the increase in cooling rate, and the proportion of transformation plastic strain in total strain decreases. When considering the transformation plasticity, the axial residual stress is more consistent with the actual working condition, the accuracy of the transformation plasticity model is higher; during the continuous cooling process, and the loading stress has a significant influence on the structure. When the stress increases, the orientation of the pearlite lamellae becomes disordered, the pearlite lamellae are bent, the lamellae spacing is no longer uniform, and the hardness is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masoumi M, De Lima NB, Tressia G, et al. Microstructure and Crystallographic Orientation Evolutions below the Superficial White Layer of a Used Pearlitic Rail[J]. J. Mater. Res. Technol., 2019, 8(6): 6 275–6 288

    Article  CAS  Google Scholar 

  2. Kuziak R, Pidvysots’kyy V, Pernach M, et al. Selection of the Best Phase Transformation Model for Optimization of Manufacturing Processes of Pearlitic Steel Rails[J]. Arch.Civ. Mech. Eng., 2019, 19(2): 535–546

    Article  Google Scholar 

  3. Inoue T. Macro-, Meso-, and Nanoscopic Metallo Thermo Mechanics[J]. J. Phys., 2004, 120: 3–20

    Google Scholar 

  4. Li GF, Liu J, Jiang GZ, et al. Numerical Simulation of Flow, Temperature and Phase Fields in U71Mn Rail-head Quenching Process[J]. Comput. Model New Technol., 2014, 18(1): 61–70

    CAS  Google Scholar 

  5. Sidhoum Z, Ferhoum R, Almansba M, et al. Experimental and Numerical Study of the Mechanical Behavior and Kinetics of the Martensitic Transformation in 304L TRIP Steel: Applied to Folding[J]. Int. J. Adv. Manuf. Tech., 2018, 97(5): 2 757–2 765

    Article  Google Scholar 

  6. Denis S, Gautier E, Simon A, et al. Stress-phase Transformation Interactions-basic Principles, Modeling and Calculation of Internal Stress[J]. Mater. Sci. Tech-Lond., 1985, 1(10): 805–814

    Article  CAS  Google Scholar 

  7. Denis S. Considering Stress-phase Transformation Interactions in the Calculation of Heat Treatment Residual Stresses[J]. J. Phys., 1996, 6(1): 159–174

    CAS  Google Scholar 

  8. Denis S. Sjostrom S. Simon A. Coupled Temperature, Stress, Phase Transformation Calculation Model Numerical Illustration of the Internal Stress Evolution during Cooling of a Eutectoid Carbon Steel Cylinder[J]. Mater. Trans., 1987, 18(7): 1 203–1 212

    Google Scholar 

  9. Denis S, Archambault P, Aubry C, et al. Modelling of Phase Transformation Kinetics in Steels and Coupling with Heat Treatment Residual Stress Predictions[J]. J. Phys., 1999, 9: 323–332

    Google Scholar 

  10. Lee SJ, Lee YK. Finite Element Simulation of Quench Distortion in a Low-alloy Steel Incorporating Transformation Kinetics[J]. Acta Mater., 2008, 56(7): 1 482–1 490

    Article  CAS  Google Scholar 

  11. Leblond JB, Devaux J, Devaux JC. Mathematical Modelling of Transformation Plasticity in Steels I: Case of Ideal-plastic Phases[J]. Int J. Plasticity, 1989, 5(6): 551–572

    Article  CAS  Google Scholar 

  12. Leblond JB. Mathematical Modelling of Transformation Plasticity in Steels II: Coupling with Strain Hardening Phenomena[J]. Int. J. Plasticity, 1989, 5(6): 573–591

    Article  CAS  Google Scholar 

  13. Liu Y, Qin SW, Hao QG, et al. Finite Element Simulation and Experimental Verification of Internal Stress of Quenched AISI 4140 Cylinders[J]. Metall. Mater. Trans. A, 2017, 48: 1 402–1 413

    Article  CAS  Google Scholar 

  14. De Oliveira WP, Savi MA, Pacheco PMCL. Finite Element Method Applied to the Quenching of Steel Cylinders using a Multiphase Constitutive Model[J]. Arch. Appl. Mech., 2013, 83(7): 1 013–1 037

    Article  Google Scholar 

  15. Carlone P, Palazzo GS, Pasquino R. Finite Element Analysis of the Steel Quenching Process: Temperature Field and Solid-solid Phase Change[J]. Comput. Math. Appl., 2010, 59(1): 585–594

    Article  Google Scholar 

  16. Bok HH, Choi JW, Suh DW, et al. Stress Development and Shape Change during Press-hardening Process using Phase-transformation-based Finite Element Analysis[J]. Int. J. Plasticity, 2015, 73: 142–170

    Article  CAS  Google Scholar 

  17. Li YJ, Pan JS, Hu MJ, et al. Martensitic Phase Transformation Plastic-ity and Its Application in Numerical Simulation of Quenching[J]. J. Shanghai Jiaotong Univer., 2001, 35(3): 352–361

    Article  CAS  Google Scholar 

  18. Li C, Li MV, Li SH, et al. Effect of Stresses on Martensite Transformation Kinetics and Transformation Plasticity of S34MnV Steel[J]. Mater. Res. Express, 2019, 6(7)

  19. Chen L, Chang G, Wei R, et al. Stress Influence on Pearlite Transition Phase Transformation Plasticity of U75V Heavy Rail Steel[J]. Int. J. Plasticity, 2014, 21(5): 105–120

    CAS  Google Scholar 

  20. El Majaty Y, Leblond JB, Kondo D. A Novel Treatment of Greenwood-Johnson’s Mechanism of Transformation Plasticity-case of Spherical Growth of Nuclei of Daughter-phase[J]. J. Mech. Phys. Solids, 2018, 121: 175–197

    Article  Google Scholar 

  21. Otsuka T, Brenner R, Bacroix B. FFT-based Modelling of Transformation Plasticity in Polycrystalline Materials during Diffusive Phase Transformation[J]. Int. J. Eng. Sci., 2018, 127: 92–113

    Article  Google Scholar 

  22. Kaiser D, De Graaff B, Jung AM, et al. A Dilatometric Study on the Influence of Compressive Stresses on the Tempering of Martensitic AISI 4140 Steel-evidence of Transformation Induced Plasticity during Cementite Precipitation[J]. Mat. Sci. Eng. A-Struct., 2017, 705: 114–121

    Article  CAS  Google Scholar 

  23. Li B, Zhu GM, Kang YL, et al. Determination and Study of Physical Parameters of U75V Rail Rolling Simulation[J]. Hot Work Technol., 2014, 43(17): 24–28

    Google Scholar 

  24. Song H, Gao M X, Jia H, et al. Study on the Phase Change Deformation of U75V Heavy Rail during the Cooling Process[J]. Int. J. Plasticity, 2011, 18(3): 95–100

    Google Scholar 

  25. Liu XY, Yang C, Yang XR. Dynamic Mechanical Behavior and Adiabatic Shear Bands of Ultrafine Grained Pure Zirconium[J]. J. Wuhan Univ. Technol., 2020, 35(1): 200–207

    Article  CAS  Google Scholar 

  26. Pan L, He W, Gu BP. Effect of Crystallographic Orientation on Quenching Stress during Martensitic Phase Transformation of Carbon Steel Plate[J]. J. Wuhan Univ. Technol., 2017, 32(5): 1 213–1 219

    Article  CAS  Google Scholar 

  27. Bohlke T, Neumann R, Rieger F. Two-scale Modeling of Grain Size and Phase Transformation Effects[J]. Steel Res. Int., 2014, 85(6): 1 018–1 034

    Article  Google Scholar 

  28. Yeddu HK, Borgenstam A, Agren J. Stress-assisted Martensitic Transformations in Steels: A 3-d Phase-field Study[J]. Acta Mater., 2013, 61(7): 2 595–2 606

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Science and Technology Innovation Guidance Project of Inner Mongolia Autonomous Region “Research and Application of Key Technology of the third Generation High Strength Heavy Load Wear Resistant Heat Treatment Rail”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen  (陈林).

Additional information

Funded by the Inner Mongolia Science and Technology Major Project(No. ZDZX2018024), the Natural Science Foundation of Inner Mongolia(No. 2019LH05016), the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region of China(No. NJZY20089), and the Innovation Fund of Inner Mongolia University of Science and Technology(No. 2019QDL-B06)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cen, Y., Chen, L., Chang, G. et al. Transformation Characteristics and Microstructure of Rail under Low Stress during Continuous Cooling. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 269–279 (2021). https://doi.org/10.1007/s11595-021-2406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-021-2406-x

Key words

Navigation