Skip to main content
Log in

Numerical Prediction of the Pumpjet Propulsor Tip Clearance Vortex Cavitation in Uniform Flow

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Previous studies show that the tip clearance loss limits the improvement of pumpjet propulsor (PJP) performance, and the tip clearance flow field is the most complicated part of PJP flow. In this work, the noncavitation and cavitation hydrodynamic performances of PJP with a tip clearance size of 1mm are obtained by using the detached-eddy simulation (DES). At constant oncoming velocity, cavitation first occurs on the duct and then disappears with the decrease of the advance ratio. The rotor blade cavitation occurs at the low advance ratio and comprises tip clearance cavitation, tip leakage cavitation, and blade sheet cavitation. In the rotor region, the typical vortices include tip separation vortex, tip leakage vortex, trailing edge shedding vortex, and blade root horseshoe vortex. Combined with the pressure distribution, both the Q and λ2 criteria give reliable results of vortex identification. The cavitation causes an expansion of tip leakage vortex in the circumferential direction and decreases the intensities of tip separation vortex in the whole tip clearance area and tip leakage vortex in the cavitation area, and enhances the strength of tip leakage vortex in the downstream non-cavitation area. Key words: pumpjet propulsor (PJP), hydrodynamics, cavitation, vortex, tip clearance vortex

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PAN G, LU L, SAHOO P K. Numerical simulation of unsteady cavitating flows of pumpjet propulsor [J]. Ships and Offshore Structures, 2016, 11(1): 64–74.

    Google Scholar 

  2. CHOWJ S, ZILLIAC G G, BRADSHAW P. Mean and turbulence measurements in the near field of a wingtip vortex [J]. AIAA Journal, 1997, 35(10): 1561–1567.

    Article  Google Scholar 

  3. HUANG B, ZHAO Y, WANG G Y. Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows [J]. Computers & Fluids, 2014, 92(3): 113–124.

    Article  Google Scholar 

  4. YOU D Y, MITTAL R, WANG M, et al. Computational methodology for large-eddy simulation of tipclearance flows [J]. AIAA Journa, 2004, 42(2): 271–279.

    Article  Google Scholar 

  5. WANG Y J, ABDEL-MAKSOUD M, WANG K Q, et al. Prediction of tip vortex cavitation inception with low-order panel method [J]. Ocean Engineering, 2016, 125: 124–133.

    Article  Google Scholar 

  6. GAGGERO S, TANI G, VIVIANI M, et al. A study on the numerical prediction of propellers cavitating tip vortex [J]. Ocean engineering, 2014, 92: 137–161.

    Article  Google Scholar 

  7. HUANG R F, JI B, LUO XW, et al. Numerical investigation of cavitation-vortex interaction in a mixed-flow waterjet pump [J]. Journal of Mechanical Science and Technology, 2015, 29(9): 3707–3716.

    Article  Google Scholar 

  8. ZHANG D S, SHI L, SHIW D, et al. Numerical analysis of unsteady tip leakage vortex cavitation cloud and unstable suction-side-perpendicular cavitating vortices in an axial flow pump [J]. International Journal of Multiphase Flow, 2015, 77: 244–259.

    Article  Google Scholar 

  9. ZHANG D S, SHI L, ZHAO R J, et al. Study on unsteady tip leakage vortex cavitation in an axial-flow pump using an improved filter-based model [J]. Journal of Mechanical Science and Technology, 2017, 31(2): 659–667.

    Article  Google Scholar 

  10. SHI L, ZHANG D S, ZHAO R J, et al. Effect of blade tip geometry on tip leakage vortex dynamics and cavitation pattern in axial-flow pump [J]. Science China Technological Sciences, 2017, 60(10): 1480–1493.

    Article  Google Scholar 

  11. SURYANARAYANA C, SATYANARAYANA B, RAMJI K, et al. Cavitation studies on axi-symmetric underwater body with pumpjet propulsor in cavitation tunnel [J]. International Journal of Naval Architecture and Ocean Engineering, 2010, 2(4): 185–194.

    Article  Google Scholar 

  12. LU L, PAN G, WEI J, et al. Numerical simulation of tip clearance impact on a pumpjet propulsor [J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8(3): 219–227.

    Article  Google Scholar 

  13. PEREIRA F, SALVATORE F, FELICE D F, et al. Experimental and numerical investigation of the cavitation pattern on a marine propeller [C]//Proceedings of the 24th Symposium on Naval Hydrodynamics. Fukuoka, Japan, 2002: 236–251.

    Google Scholar 

  14. SALVATORE F, STRECKWALL H, TERWISGA T V. Propeller cavitation modelling by CFD: Results from the VIRTUE 2008 Rome Workshop [C]// Proceedings of the First International Symposium on Marine Propulsors. Trondheim, Norway, 2009: 1–10.

    Google Scholar 

  15. SUBHAS, SAJI V F, RAMAKRISHNA S, et al. CFD analysis of a propeller flow and cavitation [J]. International Journal of Computer Applications, 2012, 55(16): 26–33.

    Article  Google Scholar 

  16. MORGUT M, NOBILE E. Influence of the mass transfer model on the numerical prediction of the cavitating flow around a marine propeller [C]//Proceedings of Second International Symposium on Marine Propulsors. Hamburg, Germany, 2011: 1–8.

    Google Scholar 

  17. MENTER F R. Zonal two equation k-ω turbulence models for aerodynamic flows [C]//AIAA 24th Fluid Dynamics Conference. Orlando, Florida: AIAA, 1993: 2906.

    Google Scholar 

  18. MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA Journal, 1994, 32(8): 1598–1605.

    Article  Google Scholar 

  19. WILCOX D C. Turbulence modeling for CFD [M]. La Cañada, California: DCW Industries Inc, 1993.

    Google Scholar 

  20. SPALART P R, JOUWH, STRELETS M, et al. Comments on the feasibility of LES for wings, and on a hybird RANS/LES approach [C]// Proceedings of First AFOSR International Conference on DNS/LES. Greyden Press, 1997: 1–10.

    Google Scholar 

  21. STRELETS M. Detached eddy simulation of massively separated flows [C]// 39th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV: AIAA, 2001: 0879.

    Google Scholar 

  22. SPALART P R, DECK S, SHURML, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities [J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3): 181–195.

    Article  Google Scholar 

  23. SPALART P R. Detached-eddy simulation [J]. Annual Review of Fluid Mechanics 2009, 41: 181–202.

    Article  Google Scholar 

  24. BRENNEN C E. Cavitation and bubble dynamics [M]. Oxford: Oxford University Press, 2013.

    Book  Google Scholar 

  25. PLESSET M S. The dynamics of cavitation bubbles [J]. Journal of Applied Mechanics, 1949, 16: 277–282.

    Google Scholar 

  26. RAYLEIGH L. On the pressure developed in a liquid during the collapse of a spherical cavity [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34: 94–98.

    Article  Google Scholar 

  27. SHI Y, PAN G, HUANG Q G, et al. Numerical simulation of cavitation characteristics for pump-jet propeller [J]. Journal of Physics: Conference Series, 2015, 640(1): 012035.

    Google Scholar 

  28. STERN F, WILSON R V, COLEMAN H W, et al. Comprehensive approach to verification and validation of CFD simulations. Part 1. Methodology and procedures [J]. Journal of Fluids Engineering, 2001, 123: 793–802.

    Article  Google Scholar 

  29. WILSON R, SHAO J, STERN F. Discussion: Criticisms of the “correction factor” verification method [J]. Journal of Fluids Engineering, 2004, 126: 704–706.

    Article  Google Scholar 

  30. STERN F, WILSON R, SHAO J. Quantitative V&V of CFD simulations and certification of CFD codes [J]. International Journal for Numerical Methods in Fluids, 2006, 50: 1335–1355.

    Article  Google Scholar 

  31. CHONG M S, PERRY A E, CANTWELL B J. A general classification of three-dimensional flow fields [J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(5): 765–777.

    Article  MathSciNet  Google Scholar 

  32. ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow [J]. Journal of Fluid Mechanics, 1999, 387: 353–396.

    Article  MathSciNet  Google Scholar 

  33. HUNT J C R, WRAYA A, MOIN P. Eddies, streams, and convergence zones in turbulent flows [C]//Proceeding of the Summer Program in Center for Turbulence Research. Stanford (CA): CTR, 1988: 193–208.

    Google Scholar 

  34. JEONG J, HUSSAIN F. On the identification of a vortex [J]. Journal of Fluid Mechanics, 1995, 285: 69–94.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Pan  (潘光).

Additional information

Foundation item: the National Natural Science Foundation of China (Nos. 51709229 and 51879220), the Natural Science Basic Research Plan in Shaanxi Province (No. 2018JQ5092), and the Fundamental Research Funds for the Central Universities of China (No. 3102019HHZY030019)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Pan, G., Huang, Q. et al. Numerical Prediction of the Pumpjet Propulsor Tip Clearance Vortex Cavitation in Uniform Flow. J. Shanghai Jiaotong Univ. (Sci.) 25, 352–364 (2020). https://doi.org/10.1007/s12204-019-2138-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-019-2138-7

Keywords

CLC number

Document code

Navigation