Skip to main content
Log in

Modification of liquid silicone rubber by octavinyl-polyhedral oligosilsesquioxanes and silicon sol

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

To develop an efficient and bio-compatible way to improve the thermal and mechanical properties of addition type liquid silicone rubber (LSR), a series of modified LSR samples were prepared by introducing octavinyl-polyhedral oligosilsesquioxanes (VPOSS) and high purity silicon sol singly or in combination before vulcanization. Significant correlation was found between the loading rate of VPOSS and thermal properties. However, mechanical properties were negatively correlated with VPOSS content within the range experimented, which may be ascribed to material defect caused by uneven distribution and aggregation. Furthermore, test results approved that the introducing of silicon sol indeed affected the stabilities of the polymer by restraining the material defect caused by the aggregation of POSS molecules and improving cross link density. For example, adding 10%-20% of silicon sol into VPOSS(1.0%) modified LSR will increase tear resistance by 43.9%-85.7%, elongation at break by 31.7%-57.3%, residue at 800 °C in N2 atmosphere by 32.0%-37.9%, residue at 650 °C in air atmosphere by 70.9%-91.6%, respectively. This work proves that, to incorporate VPOSS into LSR by hydrosilylation, and to use silicon sol as dispersant and reinforce filler can become an efficient way to improve the mechanical property, thermal stability and bio-compatibility of LSR in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu J and Mather PT. POSS Polymers: Physical Properties and Biomaterials Applications[J]. Polym. Rev., 2009, 49: 25–63

    Article  Google Scholar 

  2. Chen D, Nie J, Yi S, et al. Thermal Behavior and Mechanical Properties of Modified RTV Silicone Rubbers Using Divinylhexa[( trimethoxysilyl)ethyl]-POSS as Cross-linker[J]. Polym. Degrad. Stab., 2010, 95: 618–626

    Article  Google Scholar 

  3. Cordes DB, Lickiss PD and Rataboul F. Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes[J]. Chem. Rev., 2010, 110: 2081–2173

    Article  Google Scholar 

  4. Li L, Li X and Yang R. Mechanical, Thermal Properties, and Flame Retardancy of PC/Ultrafine Octaphenyl-POSS Composites [J]. J. Appl. Polym. Sci., 2012, 124: 3807–3814

    Article  Google Scholar 

  5. Lichtenhan JD. Polyhedral Oligomeric Silsesquioxanes: Building Blocks for Silsesquioxane-based polymers and Hybrid Materials[J]. Comments Inorg. Chem., 1995, 17: 115–130

    Article  Google Scholar 

  6. Zhou Xiaojun, et al. Nanocomposites of a Silicon-containing Arylacetylene Resin with Octakis(dimethylsiloxy)octasilsesquoixane [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2015, 30: 1310–1316

    Article  Google Scholar 

  7. Haddad TS and Lichtenhan JD. Hybrid Organic-Inorganic Thermoplastics: Styryl-Based Polyhedral Oligomeric Silsesquioxane Polymers[J]. Macromolecules, 1996, 29: 7302–7304

    Article  Google Scholar 

  8. Misra R, Alidedeoglu AH, Jarrett WL and Morgan SE. Molecular Miscibility and Chain Dynamics in POSS/Polystyrene Blends: Control of POSS Preferential Dispersion States[J]. Polymer, 2009, 50: 2906–2918

    Article  Google Scholar 

  9. Baumann TF, Jones TV, Wilson T, et al. Synthesis and Characterization of Novel PDMS Nanocomposites Using POSS Derivatives as Cross-Linking Filler[J]. J. Polym. Sci., Part A: Polym. Chem., 2009, 47: 2589–2596

    Article  Google Scholar 

  10. Leu C-M, Chang Y-T, Wei KH. Synthesis and Dielectric Properties of Polyimide-Tethered Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites Via POSS-diamine[J]. Macromolecules, 2003, 36: 9122–9127

    Article  Google Scholar 

  11. Yani Y and Lamm MH. Molecular Dynamics Simulation of Mixed Matrix Nanocomposites Containing polyimide and polyhedral Oligomeric Silsesquioxane (POSS)[J]. Polymer, 2009, 50: 1324–1332

    Article  Google Scholar 

  12. Liu H and Zheng S. Polyurethane Networks Nanoreinforced by Polyhedral Oligomeric Silsesquioxane[J]. Macromol. Rapid Commun., 2005, 26: 196–200

    Article  Google Scholar 

  13. Bourbigot S, Turf T, Bellayer S and Duquesne S. Polyhedral Oligomeric Silsesquioxane as Flame Retardant for Thermoplastic Polyurethane[J]. Polym. Degrad. Stab., 2009, 94: 1230–1237

    Article  Google Scholar 

  14. Pan G, Mark JE and Schaefer DW. Synthesis and Characterization of Fillers of Controlled Structure Based on Polyhedral Oligomeric Silsesquioxane Cages and Their Use in Reinforcing Siloxane Elastomers[J]. J. Polym. Sci., Part B: Polym. Phys., 2003, 41: 3314–3323

    Article  Google Scholar 

  15. Blanco I, Bottino F A, Bottino P. Influence of Symmetry/Asymmetry of the Nanoparticles Structure on the Thermal Stability of Polyhedral Oligomeric Silsesquioxane/Polystyrene Nanocomposites[J]. Polym. Compos., 2012, 33: 1903–1910

    Article  Google Scholar 

  16. Pistor V, Soares BG, Mauler RS. Influence of Different Percentages of N-phenylaminopropyl-poss on the Degradation Kinetic of Epoxy Resin [J]. Polym. Compos., 2012, 33: 1437–1444

    Article  Google Scholar 

  17. Vila Ramirez N, Sanchez-Soto M, Illescas S. Enhancement of POM Thermooxidation Resistance Through POSS Nanoparticles[J]. Polym. Compos., 2011, 32: 1584–1592

    Article  Google Scholar 

  18. Wu K, Kandola BK, Kandare E, et al. Flame Retardant Effect of polyhedral Oligomeric Silsesquioxane and Triglycidyl Isocyanurate on Glass Fibre-reinforced Epoxy Composites[J]. Polym. Compos., 2011, 32: 378–389

    Article  Google Scholar 

  19. Ma Q, T Hao. Fabrication and Characterization of Porous Mullite Ceramics from Pyrolysis of Alumina Powders Filled Silicone Resin [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2013, 28: 1082–1084

    Article  Google Scholar 

  20. ZENG You. Effect of Strain on the Electrical Resistance of Carbon Nanotube/Silicone Rubber Composites[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2011, 26: 812–816

    Article  Google Scholar 

  21. Chen D, Huang C, Hu X. Preparation and Characterization of Novel Polydimethylsiloxane Composites Used POSS as Crosslinker and Fumed Silica as Reinforcing Filler[J]. Polym. Compos., 2013, 34: 1041–1050

    Article  Google Scholar 

  22. Chen D, Yi S, Wu W, et al. Synthesis and Characterization of Novel Room Temperature Vulcanized (RTV) Silicone Rubbers Using Vinyl-POSS Derivatives as Cross Linking Agents[J]. Polymer, 2010, 51: 3867–3878

    Article  Google Scholar 

  23. Chen D, Liu Y, Huang C. Synergistic Effect between POSS and Fumed Silica on Thermal Stabilities and Mechanical Properties of Room Temperature Vulcanized (RTV) Silicone Rubbers[J]. Pol. Deg. Stab., 2012, 97: 308–315

    Article  Google Scholar 

  24. Vartika J, Srividhya M, Mayank D, et al. Effect of Functionalization on Dispersion of POSS-silicone Rubber Nanocomposites[J]. J. Appl. Polym. Sci.; 2013, 130: 92–96

    Article  Google Scholar 

  25. Miao Zhao, Yakai F, Yuan Li, et al. Preparation and Performance of Phenyl-VinylPOSS6Addition-Type Curable Silicone Rubber Hybrid Material[J]. J. Macromol. Sci.A., 2014, 51: 639–642

    Article  Google Scholar 

  26. Hongqiang B, Huang C, L J, Houbin L. Modification of Liquid Silicone Rubber by Octavinyl-polyhedral Oligosilsesquioxanes[J]. J. APPL. POLYM. SCI. 2016, DOI: 10.1002/APP.43906

    Google Scholar 

  27. Mark JE Some Interesting Things about Polysiloxanes[J]. Acc. Chem. Res., 2004, 37: 946–953

    Article  Google Scholar 

  28. Wang X and Dou W. Preparation of Graphite Oxide (GO) and the Thermal Stability of Silicone Rubber/GO Nanocomposites[J]. Thermochim. Acta, 2012, 529: 25–28

    Article  Google Scholar 

  29. Han Y, Lv S, Hao C, et al. Thermal Conductivity Enhancement of BN/Silicone Composites Cured under Electric Field: Stacking of Shape, Thermal Conductivity, and Particle Packing Structure Anisotropies[J]. Thermochim. Acta, 2012, 529: 68–73

    Article  Google Scholar 

  30. Demir MM, Menceloglu YZ and Erman B. Effect of Filler Amount on Thermoelastic Properties of Poly(dimethylsiloxane) Networks[J]. Polymer, 2005, 46: 4127–4134

    Article  Google Scholar 

  31. Ogoshi T, Fujiwara T, Massimo Bertolucci, et al. Tapping Mode AFM Evidence for an Amorphous Reticular Phase in a Condensation-Cured Hybrid Elastomer: a, γ-Dihydroxypoly(dimethylsiloxane)/Poly (diethoxysiloxane)/Fumed Silica Nanoparticles[J]. J. Am. Chem. Soc., 2004, 126: 12284–12285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Houbin Li  (黎厚斌) or Jun Liao  (廖俊).

Additional information

Funded by the National Natural Science Foundation of China (No.31170558)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, H., Yi, S., Huang, C. et al. Modification of liquid silicone rubber by octavinyl-polyhedral oligosilsesquioxanes and silicon sol. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32, 229–236 (2017). https://doi.org/10.1007/s11595-017-1585-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-017-1585-y

Key words

Navigation