Skip to main content

Advertisement

Log in

NMR research on cement clinker and its structures in early age hydration

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Clinker has long been regarded as a critical factor for cement hydration and solidification. α-C2S and β-C2S in 2CaO·SiO2(C2S) phase and C3S Monoclinic 1(C3S M1) and C3S Monoclinic 3 (C3S M3) in 3CaO·SiO2 (C3S) phase were clearly recorded in the 29Si MAS NMR spectra. The content of C3S phase in the clinker deduced from the fine peak analysis coincides with the phase quantification analysis calculated by the Taylor-Bogue method based on XRF, which also accords to the statistical data in industrial production. NMR provides a proof that C3S M1 and β-C2S phases have a prior reaction in the early age hydration of clinker, and demonstrates that aluminum coordination changes from tetracoordinated 4CaO·Al2O3·Fe2O3(C4AF) to hexacoordinated [Ca2Al(OH)6](SO4)0.3·3H2O(Aft) in one day hydration and changes to the 3CaO·Al2O3·CaSO4·nH2O (Afm) in a seven-day hydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edward C L, Morgan R, Norman L, et al. Correlation of Cement Performance Measurements with C3S/C2S Ratio Determined by Solid State Si-29 NMR Measurements[J]. Ind. and Eng. Chem. Res., 2009, 47(15): 5 456–5 463

    Google Scholar 

  2. Raupp-Pereira F, Segadaes A M, Silva A S, et al. Al-27 And Si-29 NMR and XRD Characterization of Clinkers: Standard Phase and New Waste Based Formulation[J]. Adv. in Appl. Ceram., 2008, 107(1): 37–45

    Article  CAS  Google Scholar 

  3. Mou Shanbin, Zheng Zhaojia. The Early Strength of Slag Cements with Addition of Hydrate Microcrystals[J]. J. Wuhan Univ. of Tech.-Mater. Sci. Ed., 2002, 17(2): 83–85

    Article  CAS  Google Scholar 

  4. Edward C L, Alemany L B, Barron A R. Solid-State Si-29 NMR Analysis of Cement: Comparing Different Methods of Relaxation Analysis Determining Spin-Lattice Relaxation Times to Enable Determination of The C3S/C2S Ratio[J]. Ind. and Eng. Chem. Res., 2007, 46(15): 5 122–5 130

    Google Scholar 

  5. Li Dongxu, Song Xuyan. The Mechanical Properties and Hydration Characteristics of Cement Pastes Containing Added-Calcium Coal Gangue[J]. J. Wuhan Univ. of Tech.-Mater. Sci. Edi., 2008, 23(2): 254–258

    Article  CAS  Google Scholar 

  6. De La Torre A G, De Vera R N, Cuberos A J M, et al. Crystal Structure of Low Magnesium-Content Alite: Application to Rietveld Quantitative Phase Analysis[J]. Cem. and Concr. Res., 2008, 38(11): 1 261–1 269

    Google Scholar 

  7. De Noirfontaine M N, Dunstetter F, Courtial M, et al. Polymorphism of Tricalcium Silicate, the Major Compound of Portland Cement Clinker 2. Modelling Alite for Rietveld Analysis, An Industrial Challenge[J]. Cem. and Concr. Res., 2006, 36(1): 54–64

    Article  Google Scholar 

  8. Dunstetter F, De Noirfontaine M N, Courtial M. Polymorphism of Tricalcium Silicate, the Major Compound of Portland Cement Clinker 1. Structure Data: Review and Unified Analysis[J]. Cem. and Concr. Res., 2006, 36(1): 39–53

    Article  CAS  Google Scholar 

  9. Courtial M, De Noirfontaine M N, Dunstetter F, et al. Polymorphism of Tricalcium Silicate in Portland Cement: a Fast Visual Identification of Structure and Superstructure[J]. Powder Diffr., 2003, 18(1): 7–15

    Article  CAS  Google Scholar 

  10. J Skibsted, C Hall, H J Jakobsen, et al. Structure and Perform. of Cements[M]. London: Spon Press, 2002: 457–477

    Google Scholar 

  11. M D Andersen, H J Jakobsen, J Skibsted. Incorporation of Aluminum in the Calcium Silicate Hydrate (C-S-H): Phase of Hydrated Portland Cements: A High-Field 27Al and 29Si MAS NMR Study[J]. Inorg. Chem., 2003, 42(7): 2 280–2 287

    Article  CAS  Google Scholar 

  12. Poulsen S L, Kocaba V, Le Saout, et al. Improved Quantification of Alite and Belite in Anhydrous Portland Cements by Si-29 NMR: Effects of Paramagnetic Ions[J]. Solid State Nucl. Magn. Reson., 2009, 36(1): 32–34

    Article  CAS  Google Scholar 

  13. Aono Y, Matsushita F, Shibata S, et al. Nano-Structural Changes of C-S-H in Hardened Cement Paste During Drying at 50 Degrees[J]. J. Adv. Concr. Technol., 2007, 5(3): 313–323

    Article  CAS  Google Scholar 

  14. Korb J P. NMR and Nuclear Spin Relaxation of Cement and Concrete Materials[J]. Curr. Opin. in Colloid & Interface Sci., 2009, 14(3): 192–202

    Article  CAS  Google Scholar 

  15. Skibsted J, Hall C. Characterization of Cement Minerals, Cement and Their Reaction Products at the Atomic and Nano Scale[J]. Cem. and Concr. Res., 2008, 38(2): 205–225

    Article  CAS  Google Scholar 

  16. Alesiani M, Pirazzoli I, Maraviglia B. Factors Affecting Early-Age Hydration of Ordinary Portland Cement Studied by NMR: Fineness, Water-to-Cement Ratio and Curing Temperature[J]. Appl. Magn. Reson., 2007, 32(3): 385–394

    Article  CAS  Google Scholar 

  17. Skibsted J, Andersen M D, Jacobsen H J. Application of Solid-State Nuclear Magnetic Resonance (NMR): in Studies of Portland Cement-Based Materials[J]. Cem. and Concr. Res., 2007, 37(6): 631–638

    Google Scholar 

  18. Shih J Y, Chang T P, Hsiao T C. Effect of Nanosilica on Characterization of Portland Cement Composite[J]. Mater. Sci. and Eng. A-Structure Mater. Prop. Microstruct. and Process., 2006, 424(1–2): 266–274

    Google Scholar 

  19. Hilbig H, Kohler F H, Schiessl P. Quantitative Si-29 MAS NMR Spectroscopy of Cement and Silica Fume Containing Paramagnetic Impurities[J]. Cem. and Concr. Res., 2006, 36(2): 326–329

    Article  CAS  Google Scholar 

  20. Cano-Barrita P F D, Marble A E, Balcom B J, et al. Embedded NMR Sensors to Monitor Evaporable Water Loss Caused by Hydration and Drying in Portland Cement Mortar[J]. Cem. and Concr. Res., 2009, 39(4): 324–328

    Article  CAS  Google Scholar 

  21. Faure P F, Rodts S. Proton NMR Relaxation as a Probe For Setting Cement Pastes[J]. Magn. Reson. Imag., 2008, 26(8):1 183–1 196

    Article  CAS  Google Scholar 

  22. Mcdonald P J, Mitchell J, Mulheron M, et al. Two-Dimensional Correlation Relaxation Studies of Cement Pastes[J]. Magn. Reson. Imag., 2007, 25(4): 470–473

    Article  CAS  Google Scholar 

  23. Karakosta E, Diamantopoulos G, Katsiotis M S, et al. In Situ Monitoring of Cement Gel Growth Dynamics. Use of A Miniaturized Permanent Halbach Magnet for Precise H-1 NMR Studies[J]. Ind. and Eng. Chem. Res., 2010, 49(2): 613–622

    Article  CAS  Google Scholar 

  24. Pirazzoli I, Alesiani M, Capuani S, et al. The Influence of Superplasticizers on the First Steps of Tricalcium Silicate Hydration Studied by NMR Techniques[J]. Magn. Reson. Imag., 2005, 23(2): 277–284

    Article  CAS  Google Scholar 

  25. Gorce J P, Milestone N B. Probing the Microstructure and Water Phases in Composite Cement Blends[J]. Cem. and Concr. Res., 2007, 37(3): 310–318

    Article  CAS  Google Scholar 

  26. Gombia Mirko, Bortolotti Villiam, De Carlo Boris. Nanopore Structure Buildup during Endodontic Cement Hydration Studied by Time-Domain Nuclear Magnetic Resonance of Lower and Higher Mobility (1):H[J]. J. Phys. Chem. B, 2010, 114(5): 1 767–1 774

    Article  CAS  Google Scholar 

  27. Rucker-Gramm P, Beddoe R E. Effect of Moisture Content of Concrete on Water Uptake[J]. Cem. and Concr. Res., 2010,40(1): 102–108

    Article  CAS  Google Scholar 

  28. C A Love, I G Richardson, A R Brough. Composition and Structure of C-S-H in White Portland Cement −20% Metakaolin Pastes Hydrated at 25 °C[J]. Cem. and Concr. Res., 2007, 37(2): 109–117

    Article  CAS  Google Scholar 

  29. G Le Saout, E LÉColier, A Rivereau, et al. Chemical Structure of Cement Aged at Normal and Elevated Temperatures and Pressures: Part I. Class G Oilwell Cement[J]. Cem. and Concr. Res., 2006, 36(1): 71–78

    Article  Google Scholar 

  30. F Brunet, P Bertani, T Charpentier, et al. Application of Si-29 Homonuclear and H-1-Si-29 Heteronuclear NMR Correlation to Structural Studies of Calcium Silicate Hydrates[J]. J. Phys. Chem. B., 2004, 108(40): 15 494–15 502

    Article  CAS  Google Scholar 

  31. H M Dyson, I G Richardson, A R Brough. A Combined 29Si MAS NMR and Selective Dissolution Technique for the Quantitative Evaluation of Hydrated Blast Furnace Slag Cement Blends[J]. J. Am. Ceram. Soc., 2007, 90(2): 598–602

    Article  CAS  Google Scholar 

  32. Thuan T Tran, Duncan Herfort, Hans J Jakobsen, et al. Site Preferences of Fluoride Guest Ions in the Calcium Silicate Phases of Portland Cement From 29Si{19F} CP-REDOR NMR Spectroscopy[J]. J. Am. Chem. Soc., 2009,131(40):14 170–14 171

    Article  CAS  Google Scholar 

  33. T Stanek, P Sulovsky. The Influence of the Alite Polymorphism on the Strength of the Portland Cement[J]. Cem. and Conc. Res., 2002, 32(7): 1 169–1 175

    Article  CAS  Google Scholar 

  34. Chen Q Y, Tyrer M, Hills C D, et al. Immobilization of Heavy Metal in Cement-Based Solidification / Stabilization: a Review[J]. Waste Management, 2009, 29(1): 390–430

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Wang  (王晓钧).

Additional information

Funded by National Basic Research Program of China (No. 2009CB623100)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Zhu, W. & Wang, H. NMR research on cement clinker and its structures in early age hydration. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 26, 972–977 (2011). https://doi.org/10.1007/s11595-011-0347-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-011-0347-5

Key words

Navigation