Skip to main content
Log in

Sinterization and hydration of synthesized cement clinker doped with sulfates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper aims to evaluate the influence of three kinds of sulfates from the green production of cement on its sintering and hydration. The properties of clinker and hydration were monitored by thermogravimetric and differential thermal analysis (TG–DTA), X-ray diffraction, X-ray fluorescence and isothermal conduction calorimeter. Results indicate that gypsum lowers the decomposition temperature of CaCO3 and all these Sulfates will enhance the solid-phase reaction but increase melting temperature. Sulfates reduce the content of C3S, but K2SO4 and 2CaSO4·K2SO4 is conducive to the formation of β-C2S. The hydration induction period is shortened by the sulfates. K2SO4 and 2CaSO4·K2SO4 improve the early hydration of clinker, but gypsum may lightly reduce the hydration reactivity of clinker in acceleration period. 2CaSO4·K2SO and K2SO can significantly accelerate the compressive strength development of cement clinker before 3 d; by contrast, gypsum is detrimental for that. The precipitation of hydration products (CH and C–S–H) in clinker with sulfates is more than that of clinker without sulfates at 9 h. K2SO4 can accelerate the hydration of clinker without forming ettringite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Horsley C, Emmert MH, Sakulich A. Influence of alternative fuels on trace element content of ordinary Portland cement. Fuel. 2016;184:481–9.

    Article  CAS  Google Scholar 

  2. Lin K, Lo K, Hung M, et al. Utilization of reduction slag and waste sludge for Portland cement clinker production. Environ Prog Sustain Energ. 2017;37(2):1–7.

    Google Scholar 

  3. Tsiliyannis CA. Industrial wastes and by-products as alternative fuels in cement plants: evaluation of an industrial symbiosis option. J Ind Ecol. 2017;3:1–19.

    Google Scholar 

  4. Huang M, Ying X, Shen D, et al. Evaluation of oil sludge as an alternative fuel in the production of Portland cement clinker. Constr Build Mater. 2017;152:226–31.

    Article  CAS  Google Scholar 

  5. Mut MDMC, Nørskov LK, Glarborg P, et al. SO2 release as consequence of alternative fuels combustion in cement rotary kiln inlets. Energy Fuels. 2015;29(4):2729–37.

    Article  CAS  Google Scholar 

  6. Dominguez O, Torres-Castillo A, Flores-Velez LM, et al. Characterization using thermomechanical and differential thermal analysis of the sinterization of Portland clinker doped with CaF2. Mater Charact. 2010;61(4):459–66.

    Article  CAS  Google Scholar 

  7. Mehta PK. Concrete structure, properties, and materials. New York: McGraw-Hill Education; 2014.

    Google Scholar 

  8. Altwair NM, Kabir S. Green concrete structures by replacing cement with pozzolanic materials to reduce greenhouse gas emissions for sustainable environment. In: International engineering and construction conference. 2010, 269–279.

  9. Taylor HFW. Distribution of sulfate between phases in Portland cement clinkers. Cem Concr Res. 1999;29(8):1173–9.

    Article  CAS  Google Scholar 

  10. Zhang Z, Qian J. Effect of protogenetic anhydrite on the hydration of cement under different curing temperature. Constr Build Mater. 2017;142:417–22.

    Article  CAS  Google Scholar 

  11. Hewlett PC, editor. Lea’s chemistry of cement and concrete. London: Arnold Publishers; 1998.

    Google Scholar 

  12. Kakali G, Kasselouri V. Investigation of the effect of Mo, Nb, W and Zr oxides on the formation of Portland cement clinker. Cem Concr Res. 1990;20(1):131–8.

    Article  CAS  Google Scholar 

  13. Gilioli C, Massazza F, Pezzuoli M. Studies on clinker calcium silicates bearing CaF2, and CaSO4. Cem Concr Res. 1979;9(3):295–302.

    Article  CAS  Google Scholar 

  14. Yang Z, Zhang Z, Energy Technology. Integrated utilization of sewage sludge for the cement clinker production. Berlin: Springer International Publishing; 2017. p. 95–102.

    Google Scholar 

  15. Perraki M, Perraki T, Kolovos K, Tsivilis S, Kakali G. Secondary raw materials in cement industry. J Therm Anal Calorim. 2002;24(70):143–50.

    Article  Google Scholar 

  16. Kolovos KG, Tsivilis S, Kakali G. Study of clinker dopped with P and S compounds. J Therm Anal Calorim. 2004;77(3):759–66.

    Article  CAS  Google Scholar 

  17. Taylor HFW. Cement chemistry. London: Thomas Telford; 1997.

    Book  Google Scholar 

  18. Li X, Huang H, Xu J. Statistical research on phase formation and modification of alite polymorphs in cement clinker with SO3, and MgO. Constr Build Mater. 2012;37(37):548–55.

    Article  Google Scholar 

  19. Moranvile-Regourd M, Bolkova A. Chemistry, structure, properties and quality of clinker. In: 9th ICCC. New Delhi, India. 1992; (1): 3–45.

  20. Nocuò-Wczelik W. Effect of Na and Al on the phase composition and morphology of autoclaved calcium silicate hydrates. Cem Conc Res. 1999;29(11):1759–67.

    Article  Google Scholar 

  21. Mayco KCJN, Skalny J, Kalyoncu R. Crystal defects and hydration I Influence of lattice defects. Cem Concr Res. 1974;4(5):835–47.

    Article  Google Scholar 

  22. Bazzoni A, Ma S, Wang Q. The effect of magnesium and zinc ions on the hydration kinetics of C3S. J Am Ceram Soc. 2015;97(11):3684–93.

    Article  CAS  Google Scholar 

  23. Gualtieri ML, Romagnoli M, Miselli P, et al. Full quantitative phase analysis of hydrated lime using the Rietveld method. Cem Concr Res. 2012;42(9):1273–9.

    Article  CAS  Google Scholar 

  24. Snellings R, Bazzoni A, Scrivener K. The existence of amorphous phase in Portland cements: physical factors affecting Rietveld quantitative phase analysis. Cem Concr Res. 2014;59(2):139–46.

    Article  CAS  Google Scholar 

  25. Jansen D, Naber C, Ectors D, et al. The early hydration of OPC investigated by in situ XRD, heat flow calorimetry, pore water analysis and 1 H NMR: learning about adsorbed ions from a complete mass balance approach. Cem Concr Res. 2018;109:230–42.

    Article  CAS  Google Scholar 

  26. De La Torre AG, Bruque S, Campo J, et al. The superstructure of CS from synchrotron and neutron powder diffraction and its role in quantitative phase analyses. Cem Concr Res. 2002;32(9):1347–56.

    Article  Google Scholar 

  27. Jost KH, Ziemer B, Seydel R. Redetermination of the structure of β-dicalcium silicate. Acta Crystallogr B. 1977;33(6):1696–700.

    Article  Google Scholar 

  28. Mueller R, Stabilisierung verschiedener Dicalciumsilikat-Modifikationen durch den Einbau von Phosphat: Synthese, Rietveld-analyse, Kalorimetrie, Diploma-thesis (2001) University of Erlangen.

  29. Mondal P, Jeffery JW. The crystal structure of tricalcium aluminate, Ca3Al2O6. Acta Crystallogr B. 2010;31(3):689–97.

    Article  Google Scholar 

  30. Jupe AC, Cockcroft JK, Barnes P, et al. The site occupancy of Mg in the brownmillerite structure and its effect on hydration properties: an X-ray/neutron diffraction and EXAFS study. J Appl Crystallogr. 2001;34(1):55–61.

    Article  CAS  Google Scholar 

  31. Goetz-Neunhoeffer F, Neubauer J. Refined ettringite structure for quantitative X-ray diffraction analysis. Powder Diffr. 2006;21(1):4–11.

    Article  CAS  Google Scholar 

  32. Busing WR, Levy HA. Neutron diffraction study of calcium hydroxide. J Chem Phys. 1957;26(3):563–8.

    Article  CAS  Google Scholar 

  33. Ishizawa N, Miyata T, Minato I, et al. A structural investigation of α-Al2O3 at 2170 K. Acta Crystallogr B. 2010;36(2):228–30.

    Article  Google Scholar 

  34. Roszczynialski W, Nocuń-Wczelik W. Studies of cementitious systems with new generation by-products from fluidised bed combustion. J Therm Anal Calorim. 2004;77(1):151–8.

    Article  CAS  Google Scholar 

  35. Balek V, Beckman IN. Theory of emanation thermal analysis: X characterization of morphology changes during hydration of cementitious binders. J Therm Anal Calorim. 2002;67(1):37–47.

    Article  CAS  Google Scholar 

  36. Strydom CA, Hudson-Lamb DL, Potgieter JH. The thermal dehydration of synthetic gypsum Thermochim. Acta. 1995;269–270(1):631–8.

    Google Scholar 

  37. Horkoss S, Lteif R, Rizk T. Influence of the clinker SO3 on the cement characteristics. Cem Concr Res. 2011;41(8):913–9.

    Article  CAS  Google Scholar 

  38. Jansen D, Goetz-Neunhoeffer F, Stabler C, Neubauer J. A remastered external standard method applied to the quantification of early OPC hydration. Cem Concr Res. 2011;41(6):602–8.

    Article  CAS  Google Scholar 

  39. Mota B, Matschei T, Scrivener K. The influence of sodium salts and gypsum on alite hydration. Cem Concr Res. 2015;75:53–65.

    Article  CAS  Google Scholar 

  40. Wang XY, Park KB. Analysis of the compressive strength development of concrete considering the interactions between hydration and drying. Cem Concr Res. 2017;102:1–15.

    Article  CAS  Google Scholar 

  41. D’Aloia L, Chanvillard G. Determining the ‘Apparent’ activation energy of concrete: Ea-numerical simulations of the heat of hydration of cement. Cem Concr Res. 2002;32(8):1277–89.

    Article  Google Scholar 

  42. Benameur HK, Wirquin E. Determination of apparent activation energy of concrete by isothermal calorimetry. Cem Concr Res. 2000;30(2):301–5.

    Article  Google Scholar 

  43. Copeland LE, Kantro DL, Verbeck G. Part IV-3 chemistry of hydration of portland cement. In: 4th International Symposium of the Chemistry of Cement, Washington, D.C. 1960; p. 429–465.

  44. De Schutter G, Taerwe L. Degree of hydration-based description of mechanical properties of early-age concrete. Mater Struct. 1996;29(7):335–44.

    Article  Google Scholar 

  45. Han F, Zhang Z, Liu J, et al. Hydration kinetics of composite binder containing fly ash at different temperatures. J Therm Anal Calorim. 2016;124(3):1691–703.

    Article  CAS  Google Scholar 

  46. Nath SK, Mukherjee S, Maitra S, Kumar S. Kinetics study of geopolymerization of fly ash using isothermal conduction calorimetry. J Therm Anal Calorim. 2017;6:1–9.

    Google Scholar 

  47. Poole JL, Riding KA, Folliard KJ, Juenger MCG, Schindler AK. Methods for calculating activation energy for Portland cement. ACI Mater J. 2010;104(1):86–94.

    Google Scholar 

  48. Schindler AK, Folliard KJ. Heat of hydration models for cementitious materials. ACI Mater J. 2005;102(1):24–33.

    CAS  Google Scholar 

  49. Knudsen T. On particle size distribution in cement hydration. In: Proceeding of 7th international congress on the chemistry of cement. Vol I, Paris; 1980. p. 170.

  50. Nicola V, Scarlett Y, Madsen IC. Quantification of phases with partial or no known crystal structures. Powder Diffr. 2006;21(4):278–84.

    Article  CAS  Google Scholar 

  51. Schreiner J, Jansen D, Ectors D, et al. New analytical possibilities for monitoring the phase development during the production of autoclaved aerated concrete. Cem Concr Res. 2018;107:247–52.

    Article  CAS  Google Scholar 

  52. Bergold ST, Goetz-Neunhoeffer F, Neubauer J. Quantitative analysis of C–S–H in hydrating alite pastes by in situ XRD. Cem Concr Res. 2013;53(2):119–26.

    Article  CAS  Google Scholar 

  53. Skocek J, Zajac M, Stabler C, et al. Predictive modelling of hydration and mechanical performance of low Ca composite cements: possibilities and limitations from industrial perspective. Cem Concr Res. 2017;100:68–83.

    Article  CAS  Google Scholar 

  54. Luxán MP, Frías M, Dorrego F. Potential expansion of cement mortars in the presence of K2SO4, and pozzolan. Cem Concr Res. 1994;24(4):728–34.

    Article  Google Scholar 

  55. Jawed I, Skalny J. Alkalies in cement and performance of Portland cement. Cem Concr Res. 1978;8(1):37–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial supports from the Shanghai municipal commission of science and technology (No. 17DZ1200300) and National Key Research and Development Projects of China (No. 2018YFD1101002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghong Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Yang, Z. Sinterization and hydration of synthesized cement clinker doped with sulfates. J Therm Anal Calorim 138, 973–981 (2019). https://doi.org/10.1007/s10973-019-08294-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08294-6

Keywords

Navigation