Skip to main content
Log in

An improvement of the Goldstein line search

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

This paper introduces CLS, a new line search along an arbitrary smooth search path, that starts at the current iterate tangentially to a descent direction. Like the Goldstein line search and unlike the Wolfe line search, the new line search uses, beyond the gradient at the current iterate, only function values. Using this line search with search directions satisfying the bounded angle condition, global convergence to a stationary point is proved for continuously differentiable objective functions that are bounded below and have Lipschitz continuous gradients. The standard complexity bounds are proved under several natural assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availibility

The online supplement is available in [18].

References

  1. Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pacific J. Math. 16(1), 1–3 (1966)

    Article  MathSciNet  Google Scholar 

  2. Cartis, C., Gould, N.I.M., Toint., Ph.L.: Evaluation Complexity of Algorithms for Nonconvex Optimization: Theory, Computation and Perspectives, volume MO30 of MOS-SIAM Series on Optimization. SIAM (2022)

  3. Cartis, C., Sampaio, Ph.R., Toint, Ph.L.: Worst-case evaluation complexity of non-monotone gradient-related algorithms for unconstrained optimization. Optimization 64(3), 1349–1361 (2015)

    Article  MathSciNet  Google Scholar 

  4. Corliss, G., Faure, C., Griewank, A., Hascoët, L., Naumann, U.: Automatic Differentiation of Algorithms: From Simulation to Optimization. Springer, New York (2002)

    Book  Google Scholar 

  5. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  6. Fletcher, R.: Practical Methods of Optimization. Wiley, New York (2000)

    Book  Google Scholar 

  7. Goldstein, A., Price, J.: An effective algorithm for minimization. Numer. Math. 10, 184–189 (1967)

    Article  MathSciNet  Google Scholar 

  8. Goldstein, A.A.: On steepest descent. J. SIAM Ser. A Control 3, 147–151 (1965)

    MathSciNet  Google Scholar 

  9. Gould, N.I.M., Orban, D., Toint, Ph.L.: CUTEst: a constrained and unconstrained testing environment with safe threads for mathematical optimization. Comput. Optim. Appl. 60, 545–557 (2015)

    Article  MathSciNet  Google Scholar 

  10. Hager, W.W., Zhang, H.: Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent. ACM Trans. Math. Softw. 32, 113–137 (2006)

    Article  Google Scholar 

  11. Karimi, H., Nutini, J., Schmidt, M.: Linear convergence of gradient and proximal-gradient methods under the Polyak–Lojasiewicz condition. In: Machine Learning and Knowledge Discovery in Databases, pp. 795–811 (2016)

  12. Kimiaei, M., Neumaier, A., Azmi, B.: LMBOPT—a limited memory method for bound-constrained optimization. Math. Program. Comput. 14, 271–318 (2022)

    Article  MathSciNet  Google Scholar 

  13. Lemarechal, C.: A view of line-searches. In: Optimization and Optimal Control. Proceedings of a Conference Held at Oberwolfach, March 16–22, 1980, pp. 59–78. Springer, Berlin (1980)

  14. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503–528 (1989)

    Article  MathSciNet  Google Scholar 

  15. Moré, J.J., Thuente, D.J.: Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286–307 (1994)

    Article  MathSciNet  Google Scholar 

  16. Neumaier, A., Azmi, B.: Line search and convergence in bound-constrained optimization. Unpublished manuscript, University of Vienna (2019). http://www.optimization-online.org/DB_HTML/2019/03/7138.html

  17. Neumaier, A., Azmi, B., Kimiaei, M.: An active set method for bound-constrained optimization. Manuscript (2023). https://optimization-online.org/?p=21354

  18. Neumaier, A., Kimiaei, M.: An improved of the Goldstein line search. Supplemental martial. (2023). https://github.com/GS1400/CLS_supplement.git

  19. Neumaier, A., Kimiaei, M., Azmi, B.: Globally linearly convergent nonlinear conjugate gradients without Wolfe line search. Manuscript (2023). https://optimization-online.org/?p=21354

  20. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (2006)

    Google Scholar 

  21. Royer, C.W., Wright, S.J.: Complexity analysis of second-order line-Search algorithms for smooth nonconvex optimization. SIAM J. Optim. 28, 1448–1477 (2018)

    Article  MathSciNet  Google Scholar 

  22. Sun, W., Yuan, Y.X.: Optimization Theory and Methods: Nonlinear Programming. Springer, Berlin (2006)

    Google Scholar 

  23. Warth, W., Werner, J.: Effiziente Schrittweitenfunktionen bei unrestringierten Optimierungsaufgaben. Computing 19, 59–72 (1977)

    Article  MathSciNet  Google Scholar 

  24. Wolfe, P.: Convergence conditions for ascent methods. SIAM Rev. 11, 226–235 (1969)

    Article  MathSciNet  Google Scholar 

  25. Zoutendijk, G.: Nonlinear programming, computational methods. In: Abadie, J. (ed.) Integer and Nonlinear Programming, pp. 37–86. North-Holland, Amsterdam (1970)

    Google Scholar 

Download references

Acknowledgements

The second author acknowledges financial support of the Austrian Science Foundation under Project No. P 34317. The authors are grateful for the thoughtful comments of two reviewers and the associate editor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Kimiaei.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neumaier, A., Kimiaei, M. An improvement of the Goldstein line search. Optim Lett (2024). https://doi.org/10.1007/s11590-024-02110-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11590-024-02110-3

Keywords

Navigation