Skip to main content
Log in

Stability analysis of conically perturbed linearly constrained least-squares problems by optimizing the regularized trajectories

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

This paper studies linearly constrained least-square optimization problems in Hilbert spaces for which the KKT system is not necessarily available to analyze and compute the solution. The primary objective is to develop new qualitative and quantitative stability estimates for the regularization error in the conical regularization approach. To attain this goal, we associate the notion of stability with the solvability of some scalar and vector optimization problems defined in terms of the regularized trajectory on the domain space and the regularized state trajectory on the constraint space. We analyze three optimization formulations. The first formulation minimizes a scalar objective function over the regularized trajectory. The second formulation consists of vector optimizing the regularized trajectory on the domain space for a specific Bishop–Phelps cone. The third formulation results in vector optimizing the regularized state trajectory for the constraint cone. We provide numerical examples to illustrate the efficacy of the developed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Martin, K., Ryan, C.T., Stern, M.: The Slater conundrum: duality and pricing in infinite-dimensional optimization. SIAM J. Optim. 26(1), 111–138 (2016)

    Article  MathSciNet  Google Scholar 

  2. Jadamba, B., Khan, A.A., Sama, M., Tammer, C.: Regularization methods for scalar and vector control problems. In: Variational analysis and set optimization, pp. 296–321. CRC Press, Boca Raton, FL (2019)

  3. Khan, A.A., Sama, M.: A new conical regularization for some optimization and optimal control problems: Convergence analysis and finite element discretization. Numerical Functional Analysis and Optimization 34(8), 861–895 (2013)

    Article  MathSciNet  Google Scholar 

  4. Henig, M.I.: A cone separation theorem. J. Optim. Theory Appl. 36(3), 451–455 (1982)

    Article  MathSciNet  Google Scholar 

  5. Henig, M.I.: Proper efficiency with respect to cones. J. Optim. Theory Appl. 36(3), 387–407 (1982)

    Article  MathSciNet  Google Scholar 

  6. López, R., Sama, M.: Stability and sensivity analysis for conical regularization of linearly constrained least-squares problems in Hilbert spaces. J. Math. Anal. Appl. 456(1), 476–495 (2017)

    Article  MathSciNet  Google Scholar 

  7. Huerga, L., Khan, A., Sama, M.: A henig conical regularization approach for circumventing the slater conundrum in linearly \(\ell _{+}^{p}\)-constrained least squares problems. J. Appl. Numer. Optim. 1, 117–129 (2019)

    Google Scholar 

  8. Khan, A.A., Tammer, C., Zalinescu, C.: Set-Valued Optimization. Springer, Heidelberg (2015)

  9. Bishop, E., Phelps, R.R.: The support functionals of a convex set. In: Proc. Sympos. Pure Math., Vol. VII, pp. 27–35. Amer. Math. Soc., Providence, R.I. (1963)

  10. Jahn, J.: Vector optimization. Springer-Verlag, Berlin (2004)

  11. Borwein, J.M., Zhuang, D.: Super efficiency in vector optimization. Trans. Amer. Math. Soc. 338(1), 105–122 (1993)

    Article  MathSciNet  Google Scholar 

  12. Aubin, J.P.: Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions. In: Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, pp. 159–229. Academic Press, New York-London (1981)

  13. Rodríguez-Marín, L., Sama, M.: \(\tau ^w\)-contingent epiderivatives in reflexive spaces. Nonlinear Anal. 68(12), 3780–3788 (2008)

    Article  MathSciNet  Google Scholar 

  14. Jahn, J., Rauh, R.: Contingent epiderivatives and set-valued optimization. Mathematical Methods of Operations Research 46(2), 193–211 (1997)

    Article  MathSciNet  Google Scholar 

  15. Aubin, J.P., Frankowska, H.: Set-valued analysis, Systems & Control: Foundations & Applications, vol. 2. Birkhäuser Boston Inc., Boston, MA (1990)

    MATH  Google Scholar 

  16. Rodríguez-Marín, L., Sama, M.: Scalar Lagrange multiplier rules for set-valued problems in infinite-dimensional spaces. J. Optim. Theory Appl. 156(3), 683–700 (2013)

    Article  MathSciNet  Google Scholar 

  17. Borwein, J.: Proper efficient points for maximizations with respect to cones. SIAM J. Control Optim. 15(1), 57–63 (1977)

    Article  MathSciNet  Google Scholar 

  18. Jiménez, B.: Strict efficiency in vector optimization. J. Math. Anal. Appl. 265(2), 264–284 (2002)

    Article  MathSciNet  Google Scholar 

  19. Studniarski, M.: Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 24(5), 1044–1049 (1986)

    Article  MathSciNet  Google Scholar 

  20. Rodríguez-Marín, L., Sama, M.: Variational characterization of the contingent epiderivative. J. Math. Anal. Appl. 335(2), 1374–1382 (2007)

    Article  MathSciNet  Google Scholar 

  21. Rodríguez-Marín, L., Sama, M.: About contingent epiderivatives. J. Math. Anal. Appl. 327(2), 745–762 (2007)

    Article  MathSciNet  Google Scholar 

  22. Tanino, T.: Sensitivity analysis in multiobjective optimization. J. Optim. Theory Appl. 56(3), 479–499 (1988)

    Article  MathSciNet  Google Scholar 

  23. Jiménez, B., Novo, V., Sama, M.: Scalarization and optimality conditions for strict minimizers in multiobjective optimization via contingent epiderivatives. J. Math. Anal. Appl. 352(2), 788–798 (2009)

    Article  MathSciNet  Google Scholar 

  24. Flores-Bazán, F., Jiménez, B.: Strict efficiency in set-valued optimization. SIAM J. Control Optim. 48(2), 881–908 (2009)

    Article  MathSciNet  Google Scholar 

  25. Sama, M.: Some remarks on the existence and computation of contingent epiderivatives. Nonlinear Anal. 71(7–8), 2997–3007 (2009)

    Article  MathSciNet  Google Scholar 

  26. Bonnans, J.F., Shapiro, A.: Perturbation analysis of optimization problems. Springer Science & Business Media (2013)

  27. Grant, M., Boyd, S., Ye, Y.: Cvx: Matlab software for disciplined convex programming (2009)

  28. Cromme, L.: Strong uniqueness. A far-reaching criterion for the convergence analysis of iterative procedures. Numer. Math. 29(2), 179–193 (1977/78)

  29. Auslender, A.: Stability in mathematical programming with nondifferentiable data. SIAM J. Control Optim. 22(2), 239–254 (1984)

    Article  MathSciNet  Google Scholar 

  30. Burke, J.V., Deng, S.: Weak sharp minima revisited. I. Basic theory. pp. 439–469 (2002). Well-posedness in optimization and related topics (Warsaw, 2001)

  31. Jadamba, B., Khan, A., Sama, M.: Error estimates for integral constraint regularization of state-constrained elliptic control problems. Comput. Optim. Appl. 67(1), 39–71 (2017)

    Article  MathSciNet  Google Scholar 

  32. Hintermüller, M., Hinze, M.: Moreau-Yosida regularization in state constrained elliptic control problems: error estimates and parameter adjustment. SIAM J. Numer. Anal. 47(3), 1666–1683 (2009)

    Article  MathSciNet  Google Scholar 

  33. Hinze, M., Meyer, C.: Variational discretization of Lavrentiev-regularized state constrained elliptic optimal control problems. Comput. Optim. Appl. 46(3), 487–510 (2010)

    Article  MathSciNet  Google Scholar 

  34. Hinze, M., Schiela, A.: Discretization of interior point methods for state constrained elliptic optimal control problems: optimal error estimates and parameter adjustment. Comput. Optim. Appl. 48(3), 581–600 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of Akhtar Khan is supported by the National Science Foundation under Award No. 1720067. Miguel Sama is supported by Ministerio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI) (Spain) and Fondo Europeo de Desarrollo Regional (FEDER) under project PGC2018-096899-B-I00 (MCIU/AEI/FEDER, UE) and Grant No. 2021-MAT11 (ETSI Industriales, UNED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Sama, M. Stability analysis of conically perturbed linearly constrained least-squares problems by optimizing the regularized trajectories. Optim Lett 15, 2127–2145 (2021). https://doi.org/10.1007/s11590-021-01722-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-021-01722-3

Keywords

Mathematics Subject Classification

Navigation