Skip to main content
Log in

Scalar Lagrange Multiplier Rules for Set-Valued Problems in Infinite-Dimensional Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper deals with Lagrange multiplier rules for constrained set-valued optimization problems in infinite-dimensional spaces, where the multipliers appear as scalarization functions of the maps instead of the derivatives. These rules provide necessary conditions for weak minimizers under hypotheses of stability, convexity, and directional compactness. Counterexamples show that the hypotheses are minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuroiwa, D.: The natural criteria in set-valued optimization. RIMS Kokyuroku 1031, 85–90 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Kuroiwa, D., Tanaka, T., Ha, T.X.D.: On cone convexity of set-valued maps. Nonlinear Anal. 30, 1487–1496 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ha, T.X.D.: Lagrange multipliers for set-valued optimization problems associated with coderivatives. J. Math. Anal. Appl. 311, 647–663 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hernández, E., Rodríguez-Marín, L.: Duality in set optimization with set-valued maps. Pac. J. Optim. 3, 245–255 (2007)

    MathSciNet  Google Scholar 

  5. Heyde, F., Lohne, A., Tammer, C.: Set-valued duality theory for multiple objective linear programs and application to mathematical finance. Math. Methods Oper. Res. 69, 159–179 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hernández, E., Rodríguez-Marín, L., Sama, M.: Scalar multiplier rules in set-valued optimization. Comput. Math. Appl. 57, 1286–1293 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Luc, D.T.: A multiplier rule for multiobjective programming problems with continuous data. SIAM J. Optim. 13, 168–178 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jahn, J.: Vector Optimization. Theory, Applications, and Extensions. Springer, Berlin (2004)

    MATH  Google Scholar 

  9. Hamel, A., Heyde, F., Lohne, A., Tammer, C., Winkler, K.: Closing the duality gap in linear vector optimization. J. Convex Anal. 11, 163–178 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Dutta, J., Tammer, C.: Lagrangian conditions for vector optimization in Banach spaces. Math. Methods Oper. Res. 64, 521–540 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. El Abdouni, B., Thibault, L.: Lagrange multipliers for Pareto nonsmooth programming problems in Banach spaces. Optimization 26, 277–285 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I. Basic Theory. Springer, Berlin (2006)

    Google Scholar 

  13. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. II. Applications. Springer, Berlin (2006)

    Google Scholar 

  14. Amahroq, T., Taa, A.: On Lagrange–Kuhn–Tucker multipliers for multiobjective optimization problems. Optimization 36, 159–172 (1997)

    Article  MathSciNet  Google Scholar 

  15. El Abdouni, B., Thibault, L.: Optimality conditions for problems with set-valued objectives. J. Appl. Anal. 2, 183–201 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jahn, J., Khan, A.A.: Generalized contingent epiderivatives in set-valued optimization: optimality conditions. Numer. Funct. Anal. Optim. 23, 807–831 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Isac, G., Khan, A.A.: Dubovitskii–Milyutin approach in set-valued optimization. SIAM J. Control Optim. 47, 144–162 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Corley, H.W.: Optimality conditions for maximizations of set-valued functions. J. Optim. Theory Appl. 58, 1–10 (1988)

    Article  MathSciNet  Google Scholar 

  19. Jahn, J., Rauh, R.: Contingent epiderivatives and set-valued optimization. Math. Methods Oper. Res. 46, 193–211 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhaüser, Boston (1990)

    MATH  Google Scholar 

  21. Götz, A., Jahn, J.: The Lagrange multiplier rule in set-valued optimization. SIAM J. Optim. 10, 331–344 (1999)

    Article  MATH  Google Scholar 

  22. Rodríguez-Marín, L., Sama, M.: About contingent epiderivatives. J. Math. Anal. Appl. 327, 745–762 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rodríguez-Marín, L., Sama, M.: Variational characterization of the contingent epiderivative. J. Math. Anal. Appl. 335, 1374–1382 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sama, M.: The role of directional compactness in the existence and computation of contingent epiderivatives. J. Math. Anal. Appl. 372, 262–272 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jahn, J., Khan, A.A.: The existence of contingent epiderivatives for set-valued maps. Appl. Math. Lett. 16, 1179–1185 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ito, K., Kunisch, K.: Lagrange multiplier approach to variational problems and applications. In: Advances in Design and Control, vol. 15. SIAM, New York (2008)

    Google Scholar 

  27. Tröltzsch, T.: Optimal Control of Partial Differential Equations, Theory, Methods and Application. Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence (2010)

    Google Scholar 

  28. Flett, F.M.: Differential Analysis. Differentiation, Differential Equations and Differential Inequalities. Cambridge University Press, Cambridge (1980)

    Book  MATH  Google Scholar 

  29. Rockafellar, R.T., Wets, J.N.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  30. Bonnans, F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    MATH  Google Scholar 

  31. Khanh, P.Q., Tuan, N.D.: Optimality conditions for nonsmooth multiobjective optimization using Hadamard directional derivatives. J. Optim. Theory Appl. 133, 341–357 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bednarczuk, E.M., Song, W.: Contingent epiderivative and its applications to set-valued optimization. Control Cybern. 27, 375–386 (1998)

    MathSciNet  MATH  Google Scholar 

  33. Li, S.J., Meng, K.W., Penot, J.P.: Calculus rules for derivatives of multimaps. Set-Valued Anal. 17, 21–39 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Levy, A.B.: Supercalm multifunctions for convergence analysis. Set-Valued Anal. 14, 249–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hernández, E., Khan, A.A., Rodríguez-Marín, L., Sama, M.: Computation formulas and multiplier rules for graphical derivatives in separable Banach spaces. Nonlinear Anal. 71, 4241–4250 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chinaie, M., Zafarani, J.: Image space analysis and scalarization of multivalued optimization. J. Optim. Theory Appl. 142, 451–467 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jahn, J., Ha, T.X.D.: New order relations in set optimization. J. Optim. Theory Appl. 148, 209–236 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zowe, J., Kurcyusz, K.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5, 49–62 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  39. Robinson, S.M.: Stability theory for systems of inequalities, Part II: Differentiable nonlinear systems. SIAM J. Numer. Anal. 13, 497–513 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  40. Durea, M.: Optimality conditions for weak and firm efficiency in set-valued optimization. J. Math. Anal. Appl. 344, 1018–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jiménez, B., Novo, V.: First order optimality conditions in vector optimization involving stable functions. Optimization 57, 449–471 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work for the second author is partially supported by Ministerio de Ciencia (Spain), project MTM2009-09493.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Sama.

Additional information

Communicated by Johannes Jahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Marín, L., Sama, M. Scalar Lagrange Multiplier Rules for Set-Valued Problems in Infinite-Dimensional Spaces. J Optim Theory Appl 156, 683–700 (2013). https://doi.org/10.1007/s10957-012-0154-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0154-y

Keywords

Navigation