Skip to main content

Advertisement

Log in

Solution Stability of a Linearly Perturbed Constraint System and Applications

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

Linear complementarity problems and affine variational inequalities have been intensively investigated by different methods. Recently, some authors have shown that solution stability of these problems with respect to total perturbations can be effectively studied via a generalized linear constraint system. The present paper focuses on characterizing stability properties of the solution map of a linearly perturbed generalized linear constraint system. The obtained results lead to several stability conditions for parametric linear complementarity problems and affine variational inequalities in explicit forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.-P.: Lipschitz behavior of solutions to convex minimization problems. Math. Oper. Res. 9, 87–111 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonnans, J.F., Shapiro, A.: Perturbation analysis of optimization problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  3. Borwein, J.M., Zhuang, D.M.: Verifiable necessary and sufficient conditions for regularity of set-valued and single-valued maps. J. Math. Anal. Appl. 134, 441–459 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cottle, R.W., Pang, J.S., Stone, R.E.: The linear complementarity problem. SIAM, Philadelphia (2009). (A corrected, unabridged republication of the work first published by Academic Press, 1992.)

    Book  MATH  Google Scholar 

  5. Dontchev, A.L., Rockafellar, R.T.: Characterizations of strong regularity for variational inequalities over polyhedral convex sets. SIAM J. Optim. 6, 1087–1105 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dontchev, A., Rockafellar, R.T.: Implicit functions and solution mappings. A view from variational analysis. Springer (2009)

  7. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational inequalities and complementarity problems, vol. I & II. Springer (2003)

  8. Gowda, M.S.: On the continuity of the solution map in linear complementarity problems. SIAM J. Optim. 2, 619–634 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gowda, M.S., Pang, J.-S.: On solution stability of the linear complementarity problem. Math. Oper. Res. 17, 77–83 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gowda, M.S., Pang, J.-S.: On the boundedness and stability of solutions to the affine variational inequality problem. SIAM J. Control Optim. 32, 421–441 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Henrion, R., Kruger, A.Y., Outrata, J.V.: Some remarks on stability of generalized equations. J. Optim. Theory Appl. 159, 681–697 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Henrion, R., Mordukhovich, B.S., Nam, N.M.: Second-oder analysis of polyhedral systems in finite and infinite dimensions and applications to robust stability of variational inequalities. SIAM J. Optim. 20, 2199–2227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huyen, D.T.K., Yen, N.D.: Coderivatives and the solution map of a linear constraint system. SIAM J. Optim. 26, 986–1007 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ioffe, A.D.: Metric regularity–A survey. arXiv:1505.07920v2 (2015)

  15. Jeyakumar, V., Yen, N.D.: Solution stability of nonsmooth continuous systems with applications to cone-constrained optimization. SIAM J. Optim. 14, 1106–1127 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lee, G.M., Tam, N.N., Yen, N.D.: Quadratic programming and affine variational inequalities: a qualitative study. Springer, New York (2005)

    MATH  Google Scholar 

  17. Mathias, R., Pang, J.-S.: Error bounds for the linear complementarity problem with a P-matrix. Linear Algebra Appl. 132, 123–136 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mordukhovich, B.S.: Metric approximations and necessary optimality conditions for general classes of extremal problems. Soviet Math. Dokl. 22, 526–530 (1980)

    MATH  Google Scholar 

  19. Mordukhovich, B.S.: Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions. Trans. Amer. Math. Soc. 340, 1–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, vol. I: Basic Theory, vol. II: Applications. Springer, Berlin (2006)

    Book  Google Scholar 

  21. Mordukhovich, B.S., Outrata, J.V.: Coderivative analysis of quasivariational inequalities with applications to stability and optimization. SIAM J. Optim. 18, 389–412 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mordukhovich, B.S., Rockafellar, R.T.: Second-order subdifferential calculus with applications to tilt stability in optimization. SIAM J. Optim. 22, 953–986 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Murty, K.G.: On the number of solutions to the complementarity problem and spanning properties of complementarity cones. Linear Algebra Appl. 5, 65–108 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nam, N.M.: Coderivatives of normal mappings and the Lipschitzian stability of parametric variational inequalities. Nonlinear Anal. 73, 2271–2282 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Oettli, W., Yen, N.D.: Continuity of the solution set of homogeneous equilibrium problems and linear complementarity problems. In: Variational Inequalities and Network Equilibrium Problems, pp. 225–234. Plenum, New York (1995)

  26. Penot, J.-P.: Metric regularity, openness and Lipschitzian behavior of multifunctions. Nonlinear Anal. 13, 629–643 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Penot, J.-P.: Calculus without Derivatives. Springer, New York (2013)

    Book  MATH  Google Scholar 

  28. Qui, N.T.: Linearly perturbed polyhedral normal cone mappings and applications. Nonlinear Anal. 74, 1676–1689 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Qui, N.T.: New results on linearly perturbed polyhedral normal cone mappings. J. Math. Anal. Appl. 381, 352–364 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qui, N.T.: Nonlinear perturbations of polyhedral normal cone mappings and affine variational inequalities. J. Optim. Theory Appl. 153, 98–122 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Robinson, S.M.: Stability theory for systems of inequalities. I. Linear systems. SIAM J. Numer. Anal. 12, 754–769 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  32. Robinson, S.M.: Stability theory for systems of inequalities. II. Differentiable nonlinear systems. SIAM J. Numer. Anal. 13, 497–513 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  33. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  35. Trang, N.T.Q.: Lipschitzian stability of parametric variational inequalities over perturbed polyhedral convex sets. Optim. Lett. 6, 749–762 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Trang, N.T.Q.: A note on Lipschitzian stability of variational inequalities over perturbed polyhedral convex sets. Optim. Lett. 10, 1221–1231 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yao, J.-C., Yen, N.D.: Coderivative calculation related to a parametric affine variational inequality, part 1: Basic calculations. Acta Math. Vietnam. 34, 157–172 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Yao, J.-C., Yen, N.D.: Coderivative calculation related to a parametric affine variational inequality, part 2: applications. Pacific J. Optim. 5, 493–506 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research is funded by China Medical University (Taichung, Taiwan). The first author would like to thank Prof. J.-C. Yao for hospitality during her six-month stay in Taiwan in 2015. Prof. N. D. Yen’s and anonymous referees’ many helpful remarks and suggestions are gratefully acknowledged. In particular, thanks to a detailed guidance of one of the referees, we are able to improve the results of Sections 4 and 5, and put these sections in better forms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. T. K. Huyen.

Additional information

J.-C. Yao was partially supported by the Grant MOST 105-2115-M-039-002-MY3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huyen, D.T.K., Yao, JC. Solution Stability of a Linearly Perturbed Constraint System and Applications. Set-Valued Var. Anal 27, 169–189 (2019). https://doi.org/10.1007/s11228-017-0442-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-017-0442-7

Keywords

Mathematics Subject Classification (2010)

Navigation