Skip to main content
Log in

N-doped Sb2SnO5@C as advanced anode material for sodium-ion batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Sodium-ion battery is evolving into a desirable alternative technology to lithium-ion batteries, thanks to its wide material distribution and low cost. Tin-antimony oxide is gaining research interest as a sodium-ion battery anode material owing to its ideal theoretical specific capacity, environment friendly, and low cost. However, because of the inner nature of poor electrical conductivity of oxides and slow ionic diffusion kinetic, the electrochemical performance of tin-antimony oxides (SSO) differs significantly from the theoretical value of merit. In this paper, we demonstrated N-doping porous carbon fibers encapsulated Sn/Sb@Sb2SnO5 composite (Sn/Sb@Sb2SnO5@PCFs-N) material. Through the use of a simple electrostatic spinning technique, the Sn and Sb nanocrystalline were in situ generated around the SSOs in a specific way, and the N-doping in the fabricated porous carbon fibers can modulate the charge transport in the fabricated composite. The unique structure can successfully increase the electrical conductivity and the specific capacity of the fabricated composite. Using as anode for Na+ ions storage, the fabricated composite delivers high specific capacity and good cycling stability and rate capability, showing a high capacity of 450 mAhg−1 at 50 mAg−1 current density even after 100 cycles. The better rate capability can be sustained even when the current raised up to 500 mA g−1. This current work can offer a perspective on the effect of phases modified and doping on the functionality of materials for the next-generation high-specific energy sodium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw data of the present study will be available on request.

References

  1. Yalew SG, van Vliet MT, Gernaat DE, Ludwig F, Miara A, Park C et al (2020) Impacts of climate change on energy systems in global and regional scenarios. Nat Energy 5:794–802

    Article  ADS  Google Scholar 

  2. Spillias S, Kareiva P, Ruckelshaus M, McDonald-Madden E (2020) Renewable energy targets may undermine their sustainability. Nat Clim Chang 10:974–976

    Article  ADS  Google Scholar 

  3. Xu J, Zhang J, Pollard TP, Li Q, Tan S, Wang C et al (2023) Electrolyte design for Li-ion batteries under extremen operating conditions. Nature 614:694–700

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Huang B, Pan Z, Su X (2018) Liang An, Recycling of lithium-ion batteries: recent advances and perspectives. J Power Source 399:274–286

    Article  ADS  CAS  Google Scholar 

  5. Kulova TL, Skundin AM (2017) From lithium-ion to sodium-ion battery. Russ Chem Bull 66(8):1329–35

    Article  CAS  Google Scholar 

  6. Palomares V, Serras P, Villaluenga I et al (2012) Na-ion Batteries, Recent Advances and Present Challenges to Become low Cost Energy Storage Systems. Energy Environ Sci 5:5884–5901

    Article  CAS  Google Scholar 

  7. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614

    Article  CAS  PubMed  Google Scholar 

  8. Chayabuka K, Mulder G, Danilov DL et al (2018) Sodium-ion battery materials and electrochemical properties reviewed. Adv Energy Mater 8:18

    Google Scholar 

  9. Wang T, Yang K, Shi J et al (2020) Simple synthesis of sandwich-like SnSe2/rGO as high initial coulombic efficiency and high stability anode for sodium-ion batteries. J Energy Chem 46:71–7

    Article  Google Scholar 

  10. Liu Z, Jin S, Cui K et al (2020) Cavity containing core-shell Bi@C nanowires toward high performance lithium ion batteries. J Alloy Compd 842:155796

    Article  CAS  Google Scholar 

  11. Zhao C, Wang Q, Yao Z et al (2020) Rational design of layered oxide materials for sodium-ion batteries. Science 370(6517):708–711

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Lv D, Wang D, Wang N et al (2022) Nitrogen and fluorine co-doped TiO2/carbon microspheres for advanced anodes in sodium-ion batteries: high volumetric capacity, superior power density and large areal capacity. J Energy Chem 68:104–112

    Article  CAS  Google Scholar 

  13. Yu F, Tang W, Wang S, Guo M, Deng W, Hu J, Jia S, Fan C (2023) Organic-carbon core–shell structure promotes cathode performance for Na-ion batteries. Adv Funct Mater 33:202300740

  14. Yang W, Chang L, Luo S, Bi X, Cao S, Wei A, Liu J, Zhang F (2022) Study on annealing treatment of spinel LiNi0.5Mn1.5O4 as cathode materials for high-voltage lithium-ion batteries. Int J Energy Res 46:18495–18510

    Article  CAS  Google Scholar 

  15. Wei A, Chang L, Luo S, Cao S, Bi X, Yang W, Liu J, Zhang F (2022) Preparation of LiNi0.5Mn1.5O4 cathode materials by non-constant temperature calcination and research on its performance. Ionics 28:555–565

    Article  CAS  Google Scholar 

  16. Chang L, Bi X, Luo S, Yang W, Wei A, Liu J (2023) Insight into the high-efficiency separation of Si element from low-grade laterite nickel ore and the preparation of Li2FeSiO4/C cathode materials for lithium-ion batteries. J Alloy Compd 937:168357

    Article  CAS  Google Scholar 

  17. Chang L, Yang W, Cai K, Bi X, Wei A, Yang R, Liu J (2023) A review on nickel-rich nickel–cobalt–manganese ternary cathode materials LiNi0.6Co0.2Mn0.2O2 for lithium-ion batteries: performance enhancement by modification. Mater Horiz 10:4776

    Article  CAS  PubMed  Google Scholar 

  18. Luo W, Shen F, Bommier C, Zhu H, Ji X, Liangbing Hu (2016) Na-ion battery anodes: materials and electrochemistry. Acc Chem Res 49(2):231–240

    Article  CAS  PubMed  Google Scholar 

  19. Han MH, Gonzalo E, Singh G, Rojo T (2015) A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energ Environ Sci 8:81–102

    Article  Google Scholar 

  20. Yu P, Tang W, Wu F-F et al (2020) Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met 39(9):1019–1033

    Article  CAS  Google Scholar 

  21. He X-X, Liu X-H, Yang Z et al (2021) Research progress of flexible sodium-ion batteries derived from renewable polymer materials. Electrochem Commun 128:107067

    Article  CAS  Google Scholar 

  22. Hasa I, Mariyappan S, Saurel D et al (2021) Challenges of today for Na-based batteries of the future: from materials to cell metrics. J Power Sources 482:228872

    Article  CAS  Google Scholar 

  23. Yang K, Tang J, Liu Y et al (2020) Controllable synthesis of peapod-like Sb@C and corn-like C@Sb nanotubes for sodium storage. ACS Nano 14:5728–5737

    Article  CAS  PubMed  Google Scholar 

  24. Wang L, Światowska J, Dai S et al (2019) Promises and challenges of alloy-type and conversion-type anode materials for sodium–ion batteries. Mater Today Energy 11:46–60

    Article  CAS  Google Scholar 

  25. Chen X, Zhang N, He P, Ding X (2023) High-capacity Sb2SnO5 with controlled Sb/Sn phase modulation as advanced anode material for sodium-ion batteries. J Alloys Compd 938:168472

    Article  CAS  Google Scholar 

  26. Zhang N, Chen X, Jiahao Xu, He P, Ding X (2023) Hexagonal Sb nanocrystals as high-capacity and long-cycle anode materials for sodium-ion batteries. ACS Appl Mater Interfaces 15:26728–26736

    Article  CAS  PubMed  Google Scholar 

  27. Zilberman I, Ludwig S, Jossen A (2019) Cell-to-cell variation of calendar aging and reversible self-discharge in 18650 nickel-rich, silicon–graphite lithium-ion cells. J Energy Storage 26:100900

    Article  Google Scholar 

  28. Muruganantham R, Liu W-R (2017) A venture synthesis and fabrication of BiVO4 as a highly stable anode material for Na-ion batteries. ChemistrySelect 2:8187–8195

    Article  CAS  Google Scholar 

  29. Muruganantham R, Maggay IVB, Huang JY, Lin YG, Yang CC, Liu WR (2020) Tailoring the mesoporous ZnMn2O4 spheres as anode materials with excellent cycle stability for sodium-ion batteries. J Alloys Compd 844:156018

    Article  CAS  Google Scholar 

  30. Muruganantham R, Maggay IVB, De Juan LMZ, Nguyen MT, Yonezawa T, Lin CH, Lin Y-G, Liu WR (2019) Electrochemical exploration of the effects of calcination temperature of a mesoporous zinc vanadate anode material on the performance of Na-ion batteries. Inorg Chem Front 6(10):2653–2659

    Article  CAS  Google Scholar 

  31. Wang Y, Wang G, Ni Y et al (2022) Dual-responsive superamolecular antimicrobial coating based on host-guest recognition. Adv Mater Interfaces 9:2201209

    Article  MathSciNet  Google Scholar 

  32. Hao Z, Dimov N, Chang J-K et al (2022) Tin phosphide-carbon composite as high-performance anode active material for sodium-ion batteries with high energy density. J Energy Chem 64:463–474

    Article  CAS  Google Scholar 

  33. Wu C, Shen L, Chen S et al (2018) Top-down synthesis of interconnected two-dimensional carbon/anti-mony hybrids as advanced anodes for sodium storage. Energy Storage Mater 10:122–129

    Article  Google Scholar 

  34. Yang L, Lei Y, Liang X et al (2022) SnO2 nanoparticles composited with biomass N-doped carbon microspheres as low cost, environmentally friendly and high-performance anode material for sodium-ion and lithium-ion batteries. J Power Sour 547:232032

    Article  CAS  Google Scholar 

  35. Li H, Zhang C, Yan Y, Hu K, Shi X, Wang N, Lin H, Rui K, Zhu J, Huang W (2020) Poly(ionic liquid) derived N-doped carbon@SnOx nanostructures self-reconstruction for alkaline-metal-ion batteries. J Power Sour 449:227509

  36. Cui J, Yao S, Huang J-Q, Qin L, Chong WG, Sadighi Z, Huang J, Wang Z, Kim J-K (2017) Sb-doped SnO2/graphene-CNT aerogels for high performance Li-ion and Na-ion battery anodes. Energy Storage Mater 9:85–95

    Article  Google Scholar 

  37. Wang Z, Zeng F, Zhang D, Wang X, Yang W, Cheng Y, Li C, Wang L (2021) Equably dispersed dispersed Sb/Sb2O3 nanoparticles in ionic liquid-derived nitrogen-enriched carbon for highly reversible lithium/sodium storage. Electrochim Acta 395:139210

    Article  CAS  Google Scholar 

  38. Ouyang P, Zhang H, Wang Y, Chen W, Li Z (2014) Electrochemical & microstructural investigations of magnetron sputtered nanostructured ATO thin films for application in Li-ion battery. Electrochim Acta 130:232–238

    Article  CAS  Google Scholar 

  39. Wu J, Yuan B, Gu Y, Zhang Y, Yan Z, Zhang L, Yang X, Zhang H, Bai L, Li Z, Huang Z-D (2023) Multifunctional layered bismuth oxychloride/amorphous antimony oxide hetero-hybrids as superior photocatalyst and potassium ion storage materials. Appl Catal B 321:122032

    Article  CAS  Google Scholar 

  40. Yu H, Seomoon K, Kim J, Kim J-K (2021) Low-cost and highly safe solid-phase sodium ion battery with a Sn–C nanocomposite anode. J Ind Eng Chem 100:112–118

    Article  CAS  Google Scholar 

  41. Zhang M, Ouyang L, Zhu M, Fang F, Liu J, Liu Z (2020) A phosphorus and carbon composite containing nanocrystalline Sb as a stable and high-capacity anode for sodium ion batteries. J Mater Chem A 8:443–452

    Article  CAS  Google Scholar 

  42. Li HJ, Li JJ, Chen Z, Wang ZZ, Qu J, Chen YQ, Zhu LJ, Jiang F (2021) Blocky Sb/C anodes with enhanced diffusion kinetics for high-rate and ultra-long cyclability sodium dual-ion batteries. ChemElectroChem 8:3512–3518

    Article  CAS  Google Scholar 

  43. Jiahao Xu, Zhao J, Zhang N, Chen X, Ding X (2023) Improved electrochemical performance of SBA-15 based SiO2 anodes with Ndoping porous carbon. J Electroanal Chem 928:117019

    Article  Google Scholar 

  44. Sun M, Wu X, Deng X, Zhang W, Xie Z, Huang Q, Huang B (2018) Synt-hesis of pyridinic-N doped carbon nanofifibers and its electro-catalytic activity f-or oxygen reduction reaction. Mater Lett 220:313–316

    Article  CAS  Google Scholar 

  45. Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) Catalyst-free synthesis of nitrogen doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358

    Article  CAS  PubMed  Google Scholar 

  46. Yang T, Han G (2012) Synthesis of a novel catalyst via pyrolyzing melamine with Fe precursor and its excellent electrocatalysis for oxygen reduction. Int J Electrochem Sci 7:10884–10893

    Article  CAS  Google Scholar 

  47. Muruganantham R, Chiang Y-X, Liu W-R (2022) Nitrogen-doped hard carbon derived from agro-food waste of mushroom bags biomass as an anode material for sodium-ion batteries. MRS Energy Sustain 9:313–323

    Article  ADS  Google Scholar 

  48. Muruganantham R, Wang F-M, Liu W-R (2022) A green route N, S-doped hard carbon derived from fruit-peel biomass waste as an anode material for rechargeable sodium-ion storage applications. Electrochim Acta 424:140573

    Article  CAS  Google Scholar 

  49. Muruganantham R, Jeng-Shin Lu, Liu W-R (2020) Spinel rGo wrapped CoV2O4 nanocomposite as a novel anode material for sodium-ion batteries. Polymers 12(3):555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dashairya L, Das D, Saha P (2020) Binder-free electrophoretic deposition of Sb/rGO on Cu foil for superior electrochemical performance in Li-ion and Na-ion batteries. Electrochim Acta 358:136948

    Article  CAS  Google Scholar 

  51. Kim J-H (2017) Choi Kyungbae Hyerang, Effect of carbon coating on nano-Si embedded SiOx-Al2O3 composites as lithium storage materials. Appl Surf Sci 416:527–535

    Article  ADS  CAS  Google Scholar 

  52. Wang Y, Shao X, Xu H, Xie M, Deng S, Wang H, Liu J, Yan H (2013) Facile synthesis of porous LiMn2O4 spheres as cathode materials for high-power lithium ion batteries. J Power Sources 226:140–148

    Article  CAS  Google Scholar 

  53. Nicholson RS (1965) Therory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37:1351–1355

    Article  CAS  Google Scholar 

  54. Sayed SY, Kalisvaart WP, Luber EJ, Olsen BC, Buriak JM (2020) Stabilizing tin anodes in sodium-ion batteries by alloying with silicon. ACS Appl Energy Mater 3:9950–9962

    Article  CAS  Google Scholar 

  55. Yuan D, Dou Y, Tian Y, Adekoya D, Xu L, Zhang S (2021) Robust pseudocapacitive sodium cation intercalation induced by cobalt vacancies at atomically thin Co1−xSe2/graphene heterostructure for sodium-ion batteries. Angew Chem Int Engl 60:18830–18837

    Article  CAS  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (NSFC, Grant Nos. 11874282, 11604245, 11981240429), the Six Talent Peaks Project in Jiangsu Province (Grant No. 2019-XNY-074), and the Vice President Project of Industry-University-Research Cooperation in Science and Technology of Jiangsu Province (Grant No. BY2020675) and Young and Middle-Aged Academic Leader of “Qinglan Project” of Universities in Jiangsu Province (2021).

Author information

Authors and Affiliations

Authors

Contributions

Chujie Yu: Methodology, Data curation; Baoyang Liu: Methodology, Data curation; Mingzhu Li: Software, Data curation; Xuli Ding: Conceptualization, Writing-review & editing, Writing–original draft, Supervision, Project administration.

Corresponding author

Correspondence to Xuli Ding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This declaration is “not applicable.”

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 881 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Liu, B., Li, M. et al. N-doped Sb2SnO5@C as advanced anode material for sodium-ion batteries. Ionics 30, 1403–1412 (2024). https://doi.org/10.1007/s11581-024-05383-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05383-x

Keywords

Navigation