Skip to main content
Log in

Exploring the electrochemical and photocatalytic potential of metal chalcogenide thin film Cu2S:Ni3S4

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This comprehensive study delves into the synthesis and characterisation of Cu2S:Ni3S4 thin films, fabricated using diethyldithiocarbamate as a sulphur source via physical vapour deposition. A systematic analysis employing various techniques elucidated the material’s structural, morphological, and optical properties. The resulting thin film exhibited a well-defined crystalline structure, boasting an average crystallite size of 32.6 nm, indicative of a remarkable crystallinity of 74%. Optical characterisation shed light on the material’s optical behaviour, revealing a band gap energy of 2.47 eV. X-ray photoelectron spectroscopy provided insights into the elemental composition and chemical bonding, unveiling distinct core level peaks attributed to Cu 2p, Ni 2p, and S 2p. Electrochemical evaluations through voltammetry measurements showcased exceptional specific capacitive performance, achieving an impressive value of 562 Fg−1. The thin film also demonstrated remarkable stability over multiple cycles, highlighting its immense potential for diverse energy storage applications. Furthermore, extensive investigations into the photocatalytic efficacy of the synthesised material unveiled its remarkable prowess in degrading various environmental pollutants. These significant findings underscore the versatility of Cu2S:Ni3S4 bimetallic sulphide thin films, extending their scope beyond energy storage and paving the way for further exploration and technological advancements in the realms of photocatalysis and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request to the corresponding author.

References

  1. Ikumapayi OM, Akinlabi ET, Adeoye AOM, Fatoba SO (2021) Microfabrication and nanotechnology in manufacturing system–an overview. Mater Today Proc 44:1154–1162

    Article  Google Scholar 

  2. Gul MM, Ahmad KS (2022) Nanocomposite Zr2S3-BaS-Cr2S3 ternary-metal chalcogenide: an impressive supercapacitor electrode and environmental remediant of toxic pollutants. Int J Energy Res 46:18697–18710

    Article  CAS  Google Scholar 

  3. Gul MM, Ahmad KS (2022) E-beam-deposited Zr2NiS4-GO alloy thin film, a tenacious photocatalyst and efficient electrode for electrical devices. J Mater Sci 57:7290–7309

    Article  CAS  ADS  Google Scholar 

  4. Priyadarshini P, Das S, Naik R (2022) A review on metal-doped chalcogenide films and their effect on various optoelectronic properties for different applications. RSC Adv 12:9599–9620

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Wu L, Hofmann JP (2022) High entropy transition metal chalcogenides as electrocatalysts for renewable energy conversion. Curr Op Electrochem 34:101010

    Article  CAS  Google Scholar 

  6. Irfan M, Azam S, Dahshan A, El Bakkali I, Nouneh K (2022) First-principles study of opto-electronic and thermoelectric properties of SrCdSnX4 (X= S, Se, Te) alkali metal chalcogenides. Comp Cond Mat 30:e00625

    Google Scholar 

  7. Khan W, Din HU, Azam S, Neffati R (2022) First-principles investigations of metal chalcogenides Tl2Hg3X4 (X= S, Se, Te) for advanced optoelectronic and thermoelectric applications. J Solid State Chem 312:123199

    Article  CAS  Google Scholar 

  8. Abouelela MM, Kawamura G, Matsuda A (2022) Metal chalcogenide-based photoelectrodes for photoelectrochemical water splitting. J Energy Chem 73:189–213

    Article  Google Scholar 

  9. Saparov B (2022) Next generation thin-film solar absorbers based on chalcogenides. Chem Rev 122:10575–10577

    Article  CAS  PubMed  Google Scholar 

  10. Hegd SS, Fernandes BJ, Talapatadur V, Ramesh KP, Ramesh K (2022) Impedance spectroscopy analysis of SnS chalcogenide semiconductors. Mater Today Proc 62:5648–5652

    Article  Google Scholar 

  11. Tedstone AA, Bin Jumah A, Asuquo E, Garforth AA (2022) Transition metal chalcogenide bifunctional catalysts for chemical recycling by plastic hydrocracking: a single-source precursor approach. Royal Soc Open Sci 9:211353

    Article  CAS  ADS  Google Scholar 

  12. Sarker JC, Hogarth G (2021) Dithiocarbamate complexes as single source precursors to nanoscale binary, ternary and quaternary metal sulfides. Chem Rev 121:6057–6123

    Article  CAS  PubMed  Google Scholar 

  13. Hogarth G, Onwudiwe DC (2021) Copper dithiocarbamates: coordination chemistry and applications in materials science, biosciences and beyond. Inorganics 9:70

    Article  CAS  Google Scholar 

  14. Holechek JL, Geli HM, Sawalhah MN, Valdez R (2022) A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability 14:4792

    Article  Google Scholar 

  15. Zhang Y, Khan I, Zafar MW (2022) Assessing environmental quality through natural resources, energy resources, and tax revenues. Environ Sci Pollut Res 29:89029–89044

    Article  Google Scholar 

  16. Rehman A, Ma H, Ozturk I, Radulescu M (2022) Revealing the dynamic effects of fossil fuel energy, nuclear energy, renewable energy, and carbon emissions on Pakistan’s economic growth. Environ Sci Pollut Res 29:48784–48794

    Article  CAS  Google Scholar 

  17. Ali SA, Ahmad T (2022) Chemical strategies in molybdenum based chalcogenides nanostructures for photocatalysis. Int J Hydrogen Ener 47:29255–29283

    Article  CAS  Google Scholar 

  18. Gul MM, Ahmad KS (2022) Electron beam deposited (Cu2S-CdS) GO thin film as active electrode for supercapacitor and enhanced photocatalyst for water remediation. Int J Energy Res 46:9371–9388

    Article  CAS  Google Scholar 

  19. Shaheen I, Hussain I, Zahra T, Javed MS, Shah SSA, Khan K, … Zhang K (2023) Recent advancements in metal oxides for energy storage materials: design, classification, and electrodes configuration of supercapacitor. J Energy Storage 72:108719

  20. Abbas N, Shaheen I, Ali I, Ahmad M, Khan SA, Qureshi A, … Hussain I (2022) Effect of growth duration of Zn0. 76Co0. 24S interconnected nanosheets for high-performance flexible energy storage electrode materials. Cer Int 48:34251–34257.

  21. Hussain I, Shaheen I, Ahmad R, Ali I, Hussain K, Hussain SS, … Ansari MZ (2023) Binder-free cupric-ion containing zinc sulfide nanoplates-like structure for flexible energy storage devices. Chemosphere 314:137660.

  22. Abbas N, Shaheen I, Hussain I, Lamiel C, Ahmad M, Ma X, … Zhang K (2022) Glycerol-mediated synthesis of copper-doped zinc sulfide with ultrathin nanoflakes for flexible energy electrode materials. J Alloy Comp 919:165701.

  23. Yu H, Zhang J, Shaheen I, Ahmad M, Chen X, Akkinepally B, Hussain I (2023) Nature-resembled nanostructures for energy storage/conversion applications. J Indus Eng Chem 129:53–68

    Article  Google Scholar 

  24. Shaheen I, Hussain I, Zahra T, Memon R, Alothman AA, Ouladsmane M, … Niazi JH (2023) Electrophoretic fabrication of ZnO/CuO and ZnO/CuO/rGO heterostructures-based thin films as environmental benign flexible electrode for supercapacitor. Chemosphere 322:138149

  25. Dhilip Kumar R, Nagarani S, Sethuraman V, Andra S, Dhinakaran V (2022) Investigations of conducting polymers, carbon materials, oxide and sulfide materials for supercapacitor applications: a review. Chem Paper 76:3371–3385

    Article  CAS  Google Scholar 

  26. Gul MM, Ahmad KS, Thomas AG, Ibrahim SM (2023) The electrochemical performance of Lanthanum Indium Sulphide photoactive electrode in a simple yet efficacious photoelectrochemical cell. J Phys Chem Solid 179:111378

    Article  CAS  Google Scholar 

  27. Gul MM, Ahmad KS, Thomas AG, Ibrahim SM (2023) Remarkable energy storage and photocatalytic remediation potential of novel graphene oxide loaded bi-metal sulphide Ba4Fe2S6-GO nanocomposite thin film. Opt Mater 138:113682

    Article  CAS  Google Scholar 

  28. Gul MM, Ahmad KS, Thomas AG, Ali D (2023) Efficacious performance of photoactive electrode In: SnO2/Er2S3: In2S3 in a photoelectrochemical system. Appl Mater Today 32:101797.

  29. Xie T, Edwards TEJ, della Ventura NM, Casari D, Huszár E, Fu L, Zhou L, Maeder X, Schwiedrzik JJ, Utke I, Michler J (2020) Synthesis of model Al-Al2O3 multilayer systems with monolayer oxide thickness control by circumventing native oxidation. Thin Solid Film 711:138287. https://doi.org/10.1016/j.tsf.2020.138287

    Article  CAS  ADS  Google Scholar 

  30. Shahidi S, Moazzenchi B, Ghoranneviss M (2015) A review-application of physical vapor deposition (PVD) and related methods in the textile industry. Eur Phys J Appl Phys 71:31302. https://doi.org/10.1051/epjap/2015140439

    Article  CAS  ADS  Google Scholar 

  31. Constantin R, Miremad B (1999) Performance of hard coatings, made by balanced and unbalanced magnetron sputtering, for decorative applications. Surf Coating Technol 120:728–733. https://doi.org/10.1016/S0257-8972(99)00366-7

    Article  Google Scholar 

  32. Swartwout R, Hoerantner MT, Bulović V (2019) Scalable deposition methods for large-area production of perovskite thin films. Energy Environ Mater 2:119–145. https://doi.org/10.1002/eem2.12043

    Article  CAS  Google Scholar 

  33. Majid S, Ahmad KS (2019) Analysis of dopant concentration effect on optical and morphological properties of PVD coated Cu-doped Ni3S2 thin films. Optik 187:152–163

    Article  CAS  ADS  Google Scholar 

  34. Sharif S, Ahmad KS (2020) Synthesis of palladium diethyldithiocarbamate complexes as precursor for the deposition of un-doped and copper sulfide doped thin films by a facile physical vapour deposition technique. Optik 218:165014

    Article  CAS  ADS  Google Scholar 

  35. Anwar J, Ahmad KS, Jaffri SB, Sohail M (2022) Doped antimony chalcogenide semiconductor thin films fabrication by physical vapour deposition: elucidation of optoelectronic and electrochemical features. Can Metal Quart 61:145–154

    Article  CAS  Google Scholar 

  36. Habibi MH, Parhizkar J (2015) Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations. Spectrochim Acta A Mol Biomol Spectrosc 150:879–885

    Article  CAS  PubMed  Google Scholar 

  37. Karthikeyan C, Dhilip Kumar R, Anandha Raj J, Karuppuchamy S (2020) One pot and large-scale synthesis of nanostructured metal sulfides: synergistic effect on supercapacitor performance. Energy Environment 31:1367–1384

    Article  CAS  Google Scholar 

  38. Chen L, Hosseini M, Fakhri A, Fazelian N, Nasr SM, Nobakht N (2019) Synthesis and characterization of Cr2S3–Bi2O3 nanocomposites: photocatalytic, quenching, repeatability, and antibacterial performances. J Mater Sci Mater Electron 30:13067–13075

    Article  CAS  Google Scholar 

  39. Ghogare TT, Lokhande VC, Ji T, Patil UM, Lokhande CD (2020) A graphene oxide/samarium sulfide (GO/Sm2S3) composite thin film: preparation and electrochemical study. Surf Inter 19:100507

    CAS  Google Scholar 

  40. Gahtar A, Benramache S, Zaouche C, Boukacham A, Sayah A (2020) Effect of temperature on the properties of nickel sulfide films performed by spray pyrolysis technique. Adv Mater Sci 20:36–51

    Article  CAS  Google Scholar 

  41. Mousavi-Kamazani M, Salavati-Niasari M, Sadeghinia M (2013) Synthesis and characterization of Cu2S nanostructures via cyclic microwave radiation. Superlatt Microstruct 63:248–257

    Article  CAS  ADS  Google Scholar 

  42. Näslund LÅ, Persson PO, Rosén J (2020) X-ray photoelectron spectroscopy of Ti3AlC2, Ti3C2Tz, and TiC provides evidence for the electrostatic interaction between laminated layers in MAX-phase materials. J Phys Chem C 124:27732–27742

    Article  Google Scholar 

  43. Lian C, Liu K, Liu H, Wu J (2017) Impurity effects on charging mechanism and energy storage of nanoporous supercapacitors. J Phys Chem C 121:14066–14072

    Article  CAS  Google Scholar 

  44. Jiang Q, Kurra N, Alhabeb M, Gogotsi Y, Alshareef HN (2018) All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv Energy Mater 8:1703043

    Article  Google Scholar 

  45. Gul MM, Ahmad KS (2019) Bioelectrochemical systems: sustainable bio-energy powerhouses. Biosensor Bioelectron 142:111576

    Article  CAS  Google Scholar 

  46. Shinde PA, Chodankar NR, Kim HJ, Abdelkareem MA, Ghaferi AA, Han YK, … Ariga K (2023) Ultrastable 1T-2H WS2 heterostructures by nanoarchitectonics of phosphorus-triggered phase transition for hybrid supercapacitors. ACS Ener Lett 8:4474–4487

  47. Shinde PA, Chodankar NR, Abdelkareem MA, Patil SJ, Han YK, Elsaid K, Olabi AG (2022) All transition metal selenide composed high-energy solid-state hybrid supercapacitor. Small 18:2200248

    Article  CAS  Google Scholar 

  48. Shinde PA, Olabi AG, Chodankar NR, Patil SJ, Hwang SK, Abdelkareem MA (2023) Realizing superior redox kinetics of metal-metal carbides/carbon coordination supported heterointerface for stable solid-state hybrid supercapacitor. Chem Eng J 454:140246

    Article  CAS  Google Scholar 

  49. Shinde PA, Abbas Q, Chodankar NR, Ariga K, Abdelkareem MA, Olabi AG (2023) Strengths, weaknesses, opportunities, and threats (SWOT) analysis of supercapacitors: a review. J Ener Chem 79:611–638

    Article  CAS  Google Scholar 

  50. Sithole RK, Machogo LF, Moloto MJ, Gqoba SS, Mubiayi KP, Van Wyk J, Moloto N (2020) One-step synthesis of Cu3N, Cu2S and Cu9S5 and photocatalytic degradation of methyl orange and methylene blue. J Photochem Photobiol A Chem 397:112577

    Article  CAS  Google Scholar 

  51. Borthakur P, Das MR (2018) Hydrothermal assisted decoration of NiS2 and CoS nanoparticles on the reduced graphene oxide nanosheets for sunlight driven photocatalytic degradation of azo dye: effect of background electrolyte and surface charge. J Colloid Interface Sci 516:342–354

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Li S, Zhang Z, Yan L, Jiang S, Zhu N, Li J, … Yu S (2017) Fast synthesis of CuS and Cu9S5 microcrystal using subcritical and supercritical methanol and their application in photocatalytic degradation of dye in water. J Supercritical Fluid 123:11–17

  53. Kaushik B, Rana P, Solanki K, Rawat D, Yadav S, Naikwadi DR, … Sharma RK (2022) In-situ synthesis of 3-D hierarchical ZnFe2O4 modified Cu2S snowflakes: exploring their bifunctionality in selective photocatalytic reduction of nitroarenes and methyl orange degradation. J Photochem Photobiol A Chem 433:114165

  54. Qian LL, Li Y, Li JF, Wang CW (2018) Enhanced photocatalytic performance from NiS/TiO2 pn heterojunction nanosheet arrays. Superlatt Microstruct 117:317–329

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Department of Environmental Sciences, Fatima Jinnah Women University, Pakistan for providing the technical and financial facilities needed for completion of this work. Authors also acknowledge the Higher Education Commission of Pakistan and Photon Science Institute, The University of Manchester, UK. The authors highly acknowledge Xuzhao Liu, PhD student, The University of Manchester, UK, for his tremendous help and assistance during the research. The authors are grateful to the Researchers Supporting Project number (RSP2024R374), King Saud University, Riyadh, Saudi Arabia.

Funding

The authors are grateful to the Researchers Supporting Project number (RSP2024R374), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

M.M.G. performed research work and experimentation, wrote the manuscript text, and plotted all graphs and figures. K.S.A. performed supervision of the research, presented idea for research, and reviewed the manuscript, A.G.T. also supervised the work and facilitated during research. M.K.O. reviewed the manuscript and helped in final drafting.

Corresponding author

Correspondence to Khuram Shahzad Ahmad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, M.M., Ahmad, K.S., Thomas, A.G. et al. Exploring the electrochemical and photocatalytic potential of metal chalcogenide thin film Cu2S:Ni3S4. Ionics 30, 1587–1602 (2024). https://doi.org/10.1007/s11581-024-05378-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05378-8

Keywords

Navigation