Skip to main content
Log in

A pre-burning treatment facilitating formation of pores in biochars and reinforcing their electrochemical performance in supercapacitor

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Continuous efforts are always being made to reinforce biochars’ properties for large-scale utilization in new energy devices. Here, a pre-burning treatment is introduced for preparing the biochars from shaddock peel, longan pericarp, and loofah sponge. The results of XRD demonstrate more disordered structures are caused in the prepared biochars by the pre-burning, which also introduces more oxygen-containing functional groups on the biochars’ surface discovered by the FTIR and XPS tests. The N2 adsorption–desorption results indicate that the pre-burning can facilitate pore formation in the biochars, boosting specific surface area and pore volume, significantly reducing the average pore size of biochars. Specifically, for the loofah sponge based biochar, the pre-burning treatment causes an increase in specific surface area (from 271 to 973 m2 g−1), a rise in pore volume (from 0.22 to 0.53 cm3 g−1), and a decrease in average pore diameter (from 3.21 to 2.3 nm). The specific capacitance of the supercapacitor with the loofah sponge based biochar electrodes is raised from 85.4 to 170 F g−1at 0.5 A g−1 by the pre-burning treatment. Besides, the longan pericarp-derived biochar with the pre-burning treatment achieves a power density of 5000 W kg−1 under an energy density of 21.81 Wh kg−1. We believe the pre-burning treatment is an effective and convenient route for the reinforcement of biochars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

“Not applicable” in our submission.

References

  1. Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna PL, Grey CP, Dunn B, Simon P (2016) Efficient storage mechanisms for building better supercapacitors. Nat Energy 1:1–10. https://doi.org/10.1038/nenergy.2016.70

  2. Ghosh S, Barg S, Jeong SM, Ostrikov K (2020) Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv Energy Mater 10:1–44. https://doi.org/10.1002/aenm.202001239

    Article  CAS  Google Scholar 

  3. Wang J, Zhang X, Li Z, Ma Y, Ma L (2020) Recent progress of biomass-derived carbon materials for supercapacitors. J Power Sources 451:227794. https://doi.org/10.1016/j.jpowsour.2020.227794

    Article  CAS  Google Scholar 

  4. Owusu KA, Qu L, Li J, Wang Z, Zhao K, Yang C, Hercule KM, Lin C, Shi C, Wei Q, Zhou L, Mai L (2017) Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat Commun 8:1–11. https://doi.org/10.1038/ncomms14264

    Article  Google Scholar 

  5. Qu WH, Xu YY, Lu AH, Zhang XQ, Li WC (2015) Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Biores Technol 189:285–291. https://doi.org/10.1016/j.biortech.2015.04.005

    Article  CAS  Google Scholar 

  6. Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, Cai M (2016) Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ Sci 9:102–106. https://doi.org/10.1039/c5ee03149d

    Article  CAS  Google Scholar 

  7. Zhang W, Fu Q, Chen X, Yu Z, Jin Y, Liu N, Sheng Y, Xiao L, Chen J (2022) Facile yet versatile assembling of helical carbon nanofibers via metal-organic frameworks burned in ethanol flame and their electrochemical properties as electrode of supercapacitor. J Power Sources 521:230908. https://doi.org/10.1016/j.jpowsour.2021.230908

    Article  CAS  Google Scholar 

  8. Pan H, Li J, Feng YP (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5:654–668. https://doi.org/10.1007/s11671-009-9508-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li J, Wang X, Huang Q, Gamboa S, Sebastian PJ (2006) Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J Power Sources 158:784–788. https://doi.org/10.1016/j.jpowsour.2005.09.045

    Article  CAS  Google Scholar 

  10. Gong Y, Li D, Luo C, Fu Q, Pan C (2017) Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem 19:4132–4140. https://doi.org/10.1039/c7gc01681f

    Article  CAS  Google Scholar 

  11. Ma ZW, Zhang KN, Zou ZJ, Lü QF (2021) High specific area activated carbon derived from chitosan hydrogel coated tea saponin: one-step preparation and efficient removal of methylene blue. J Environ Chem Eng 9:105251. https://doi.org/10.1016/j.jece.2021.105251

    Article  CAS  Google Scholar 

  12. Shetty A, Molahalli V, Sharma A, Hegde G (2023) Biomass-derived carbon materials in heterogeneous catalysis: a step towards sustainable future. Catalysts 13:20. https://doi.org/10.3390/catal13010020

  13. Lima RMAP, dos Reis GS, Lassi U, Lima EC, Dotto GL, de Oliveira HP (2023) Sustainable supercapacitors based on polypyrrole-doped activated biochar from wood waste electrodes. C 9:59. https://doi.org/10.3390/c9020059

    Article  CAS  Google Scholar 

  14. Bhattacharjya D, Yu JS (2014) Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor. J Power Sources 262:224–231. https://doi.org/10.1016/j.jpowsour.2014.03.143

    Article  CAS  Google Scholar 

  15. Pang L, Zou B, Zou Y, Han X, Cao L, Wang W, Guo Y (2016) A new route for the fabrication of corn starch-based porous carbon as electrochemical supercapacitor electrode material. Colloids Surf A: Physicochem Eng Asp 504:26–33. https://doi.org/10.1016/j.colsurfa.2016.05.049

    Article  CAS  Google Scholar 

  16. Yuan Y, Yi R, Sun Y, Zeng J, Li J, Hu J, Zhao Y, Sun W, Zhao C, Yang L, Zhao C (2018) Porous activated carbons derived from pleurotus eryngii for supercapacitor applications. J Nanomater 2018:1–10. https://doi.org/10.1155/2018/7539509

  17. Cao X, Li Z, Chen H, Zhang C, Zhang Y, Gu C, Xu X, Li Q (2021) Synthesis of biomass porous carbon materials from bean sprouts for hydrogen evolution reaction electrocatalysis and supercapacitor electrode. Int J Hydrogen Energy 46:18887–18897. https://doi.org/10.1016/j.ijhydene.2021.03.038

    Article  CAS  Google Scholar 

  18. Zheng LH, Chen MH, Liang SX, Lü QF (2021) Oxygen-rich hierarchical porous carbon derived from biomass waste-kapok flower for supercapacitor electrode. Diam Relat Mater 113:108267. https://doi.org/10.1016/j.diamond.2021.108267

    Article  ADS  CAS  Google Scholar 

  19. Wang JR, Wan F, Lü QF, Chen F, Lin Q (2018) Self-nitrogen-doped porous biochar derived from kapok (Ceiba insignis) fibers: effect of pyrolysis temperature and high electrochemical performance. J Mater Sci Technol 34:1959–1968. https://doi.org/10.1016/j.jmst.2018.01.005

    Article  CAS  Google Scholar 

  20. Dubey P, Shrivastav V, Maheshwari PH, Sundriyal S (2020) Recent advances in biomass derived activated carbon electrodes for hybrid electrochemical capacitor applications: challenges and opportunities. Carbon 170:1–29. https://doi.org/10.1016/j.carbon.2020.07.056

    Article  CAS  Google Scholar 

  21. Wang R, Wang P, Yan X, Lang J, Peng C, Xue Q (2012) Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl Mater Interfaces 4:5800–5806. https://doi.org/10.1021/am302077c

    Article  CAS  PubMed  Google Scholar 

  22. Liu W, Mei J, Liu G, Kou Q, Yi T, Xiao S (2018) Nitrogen-doped hierarchical porous carbon from wheat straw for supercapacitors. ACS Sustain Chem Eng 6:11595–11605. https://doi.org/10.1021/acssuschemeng.8b01798

    Article  CAS  Google Scholar 

  23. Joshi A, Sahu V, Singh G, Sharma RK (2019) Performance enhancement of a supercapacitor negative electrode based on loofah sponge derived oxygen rich carbon through encapsulation of MoO3 nanoflowers. Sustain Energy Fuels 3:1248–1257. https://doi.org/10.1039/c8se00562a

    Article  CAS  Google Scholar 

  24. Han J, Ping Y, Li J, Liu Z, Xiong B, Fang P, He C (2019) One-step nitrogen, boron codoping of porous carbons derived from pomelo peels for supercapacitor electrode materials. Diam Relat Mater 96:176–181. https://doi.org/10.1016/j.diamond.2019.05.014

    Article  ADS  CAS  Google Scholar 

  25. He D, Zhao W, Li P, Liu Z, Wu H, Liu L, Han K, Liu L, Wan Q, Butt FK, Qu X (2019) Bifunctional biomass-derived 3D nitrogen-doped porous carbon for oxygen reduction reaction and solid-state supercapacitor. Appl Surf Sci 465:303–312. https://doi.org/10.1016/j.apsusc.2018.09.185

    Article  ADS  CAS  Google Scholar 

  26. Sun W, Lipka SM, Swartz C, Williams D, Yang F (2016) Hemp-derived activated carbons for supercapacitors. Carbon 103:181–192. https://doi.org/10.1016/j.carbon.2016.02.090

    Article  CAS  Google Scholar 

  27. Lu H, Zhao XS (2017) Biomass-derived carbon electrode materials for supercapacitors. Sustain Energy Fuels 1:1265–1281. https://doi.org/10.1039/C7SE00099E

    Article  CAS  Google Scholar 

  28. Vamvuka D (2011) Bio‐oil, solid and gaseous biofuels from biomass pyrolysis processes—An overview. Int J Energy Res 35:835–862. https://doi.org/10.1002/er.1804

  29. Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30:219–230. https://doi.org/10.1016/j.pecs.2003.10.004

    Article  CAS  Google Scholar 

  30. Oginni O, Singh K, Oporto G, Dawson-Andoh B, McDonald L, Sabolsky E (2019) Influence of one-step and two-step KOH activation on activated carbon characteristics. Bioresour Technol Rep 7:100266. https://doi.org/10.1016/j.biteb.2019.100266

    Article  Google Scholar 

  31. Bhomick PC, Supong A, Karmaker R, Baruah M, Pongener C, Sinha D (2019) Activated carbon synthesized from biomass material using single-step KOH activation for adsorption of fluoride: experimental and theoretical investigation. Korean J Chem Eng 36:551–562. https://doi.org/10.1007/s11814-019-0234-x

    Article  CAS  Google Scholar 

  32. Shan D, Yang J, Liu W, Yan J, Fan Z (2016) Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors. J Mater Chem A 4:13589–13602. https://doi.org/10.1039/c6ta05406d

    Article  CAS  Google Scholar 

  33. Feng H, Zheng M, Dong H, Xiao Y, Hu H, Sun Z, Long C, Cai Y, Zhao X, Zhang H, Lei B, Liu Y (2015) Three-dimensional honeycomb-like hierarchically structured carbon for high-performance supercapacitors derived from high-ash-content sewage sludge. J Mater Chem A 3:15225–15234. https://doi.org/10.1039/c5ta03217b

    Article  CAS  Google Scholar 

  34. Liu T, Zhou Z, Guo Y, Guo D, Liu G (2019) Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings. Nat Commun 10:1–10. https://doi.org/10.1038/s41467-019-08644-w

    Article  ADS  CAS  Google Scholar 

  35. Liang X, Liu R, Wu X (2021) Biomass waste derived functionalized hierarchical porous carbon with high gravimetric and volumetric capacitances for supercapacitors. Microporous Mesoporous Mater 310:110659. https://doi.org/10.1016/j.micromeso.2020.110659

    Article  CAS  Google Scholar 

  36. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541. https://doi.org/10.1126/science.1200770

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Chen C, Fu Q, Chen X, He G, Ye J, Zhou C, Hu K, Cheng L, Zhao M (2022) An effective pre-burning treatment boosting adsorption capacity of sorghum distillers’ grain derived porous carbon. Diam Relat Mater 124:108914. https://doi.org/10.1016/j.diamond.2022.108914

    Article  ADS  CAS  Google Scholar 

  38. Dastan D, Chaure N, Kartha M (2017) Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J Mater Sci: Mater Electron 28:7784–7796. https://doi.org/10.1007/s10854-017-6474-9

    Article  CAS  Google Scholar 

  39. Wang C, Wu D, Wang H, Gao Z, Xu F, Jiang K (2017) Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors. J Power Sources 363:375–383. https://doi.org/10.1016/j.jpowsour.2017.07.097

    Article  CAS  Google Scholar 

  40. Lee HM, An KH, Chung DC, Jung SC, Park YK, Park SJ, Kim BJ (2019) Comparison studies on pore development mechanisms of activated hard carbons from polymeric resins and their applications for electrode materials. Renew Energy 144:116–122. https://doi.org/10.1016/j.renene.2018.11.020

    Article  CAS  Google Scholar 

  41. Zhao LF, Hu Z, Lai WH, Tao Y, Peng J, Miao ZC, Wang YX, Chou SL, Liu HK, Dou SX (2021) Hard carbon anodes: fundamental understanding and commercial perspectives for Na-Ion batteries beyond Li-Ion and K-Ion counterparts. Adv Energy Mater 11:1–28. https://doi.org/10.1002/aenm.202002704

    Article  CAS  Google Scholar 

  42. Liu Y, Qu X, Huang G, Xing B, Zhang F, Li B, Zhang C, Cao Y (2020) 3-Dimensional porous carbon with high nitrogen content obtained from longan shell and its excellent performance for aqueous and all-solid-state supercapacitors. Nanomaterials 10:808. https://doi.org/10.3390/nano10040808

  43. Prajapati AK, Das S, Mondal MK (2020) Exhaustive studies on toxic Cr(VI) removal mechanism from aqueous solution using activated carbon of Aloe vera waste leaves. J Mol Liq 307:112956. https://doi.org/10.1016/j.molliq.2020.112956

    Article  CAS  Google Scholar 

  44. Liou TH, Wu SJ (2009) Characteristics of microporous/mesoporous carbons prepared from rice husk under base- and acid-treated conditions. J Hazard Mater 171:693–703. https://doi.org/10.1016/j.jhazmat.2009.06.056

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Song X, Xu Y, Shen H, Kong X, Xu H (2019) Utilization of wheat bran for producing activated carbon with high specific surface area via NaOH activation using industrial furnace. J Clean Prod 210:366–375. https://doi.org/10.1016/j.jclepro.2018.11.041

    Article  CAS  Google Scholar 

  46. Yu Q, Li M, Ji X, Qiu Y, Zhu Y, Leng C (2016) Characterization and methanol adsorption of walnut-shell activated carbon prepared by KOH activation. J Wuhan Univ Technol Mater Sci Edition 31:260–268. https://doi.org/10.1007/s11595-016-1362-3

    Article  CAS  Google Scholar 

  47. Vitolina S, Shulga G, Neiberte B, Livcha S, Verovkins A, Puke M, Reihmane S (2014) The efficiency of biomass removal from model woodworking wastewater with polyethylenimine. 9th Int Conf Environ Eng ICEE 2014:22–23. https://doi.org/10.3846/enviro.2014.067

    Article  Google Scholar 

  48. Wu X, Wen T, Guo H, Yang S, Wang X, Xu A (2013) Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7:3589–3597. https://doi.org/10.1021/nn400566d

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang K, Zhao N, Lei S, Yan R, Tian X, Wang J, Song Y, Xu D, Guo Q, Liu L (2015) Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim Acta 166:1–11. https://doi.org/10.1016/j.electacta.2015.03.048

    Article  CAS  Google Scholar 

  50. dos Reis GS, Guy M, Mathieu M, Jebrane M, Lima EC, Thyrel M, Dotto GL, Larsson SH (2022) A comparative study of chemical treatment by MgCl2, ZnSO4, ZnCl2, and KOH on physicochemical properties and acetaminophen adsorption performance of biobased porous materials from tree bark residues. Colloids Surf A: Physicochem Eng Asp 642:128626. https://doi.org/10.1016/j.colsurfa.2022.128626

    Article  CAS  Google Scholar 

  51. Kazak O, Eker YR, Bingol H, Tor A (2018) Preparation of chemically-activated high surface area carbon from waste vinasse and its efficiency as adsorbent material. J Mol Liq 272:189–197. https://doi.org/10.1016/j.molliq.2018.09.085

    Article  CAS  Google Scholar 

  52. Wang C, Zhang J, Liu C, Song X, Zhang C (2021) Wood–inspired preparation of ligninsulfonate/trimesoylchloride nanofilm with a highly negatively charged surface for removing anionic dyes. Chem Eng J 412:128609. https://doi.org/10.1016/j.cej.2021.128609

    Article  CAS  Google Scholar 

  53. Zhou L, Cao H, Zhu S, Hou L, Yuan C (2015) Hierarchical micro-/mesoporous N- and O-enriched carbon derived from disposable cashmere: a competitive cost-effective material for high-performance electrochemical capacitors. Green Chem 17:2373–2382. https://doi.org/10.1039/c4gc02032d

    Article  CAS  Google Scholar 

  54. Yang W, Yang W, Ding F, Sang L, Ma Z, Shao G (2017) Template-free synthesis of ultrathin porous carbon shell with excellent conductivity for high-rate supercapacitors. Carbon 111:419–427. https://doi.org/10.1016/j.carbon.2016.10.025

    Article  CAS  Google Scholar 

  55. Wang Y, Chang B, Guan D, Dong X (2015) Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors. J Solid State Electrochem 19:1783–1791. https://doi.org/10.1007/s10008-015-2789-8

    Article  CAS  Google Scholar 

  56. Wu J, Zhang X, Li Z, Yang C, Zhong W, Li W, Zhang C, Yang N, Zhang Q, Li X (2020) Toward high-performance capacitive potassium-ion storage: a superior anode material from silicon carbide-derived carbon with a well-developed pore structure. Adv Func Mater 30:1–8. https://doi.org/10.1002/adfm.202004348

    Article  CAS  Google Scholar 

  57. Liu D, Zhang W, Lin H, Li Y, Lu H, Wang Y (2016) A green technology for the preparation of high capacitance rice husk-based activated carbon. J Clean Prod 112:1190–1198. https://doi.org/10.1016/j.jclepro.2015.07.005

    Article  CAS  Google Scholar 

  58. Gong C, Wang X, Ma D, Chen H, Zhang S, Liao Z (2016) Microporous carbon from a biological waste-stiff silkworm for capacitive energy storage. Electrochim Acta 220:331–339. https://doi.org/10.1016/j.electacta.2016.10.120

    Article  CAS  Google Scholar 

  59. Shinde PA, Seo Y, Lee S, Kim H, Pham QN, Won Y, Chan Jun S (2020) Layered manganese metal-organic framework with high specific and areal capacitance for hybrid supercapacitors. Chem Eng J 387:122982. https://doi.org/10.1016/j.cej.2019.122982

    Article  CAS  Google Scholar 

  60. Chen L, Ji T, Mu L, Zhu J (2017) Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon 111:839–848. https://doi.org/10.1016/j.carbon.2016.10.054

    Article  CAS  Google Scholar 

  61. Liu X, Wang Y, Zhan L, Qiao W, Liang X, Ling L (2011) Effect of oxygen-containing functional groups on the impedance behavior of activated carbon-based electric double-layer capacitors. J Solid State Electrochem 15:413–419. https://doi.org/10.1007/s10008-010-1100-2

    Article  CAS  Google Scholar 

  62. You B, Wang L, Yao L, Yang J (2013) Three dimensional n-doped graphene-cnt networks for supercapacitor. Chem Commun 49:5016–5018. https://doi.org/10.1039/c3cc41949e

    Article  CAS  Google Scholar 

  63. Yan Y, Gu P, Zheng S, Zheng M, Pang H, Xue H (2016) Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J Mater Chem A 4:19078–19085. https://doi.org/10.1039/c6ta08331e

    Article  CAS  Google Scholar 

  64. Abouelamaiem DI, He G, Neville TP, Patel D, Ji S, Wang R, Parkin IP, Jorge AB, Titirici MM, Shearing PR, Brett DJL (2018) Correlating electrochemical impedance with hierarchical structure for porous carbon-based supercapacitors using a truncated transmission line model. Electrochim Acta 284:597–608. https://doi.org/10.1016/j.electacta.2018.07.190

    Article  CAS  Google Scholar 

  65. Wang L, Mu G, Tian C, Sun L, Zhou W, Yu P, Yin J, Fu H (2013) Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors. Chemsuschem 6:880–889. https://doi.org/10.1002/cssc.201200990

    Article  CAS  PubMed  Google Scholar 

  66. Wang C, Wu D, Wang H, Gao Z, Xu F, Jiang K (2018) A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity. J Mater Chem A 6:1244–1254. https://doi.org/10.1039/c7ta07579k

    Article  CAS  Google Scholar 

  67. Duan H, Zhao Z, Lu J, Hu W, Zhang Y, Li S, Zhang M, Zhu R, Pang H (2021) When conductive MOFs meet MnO2: high electrochemical energy storage performance in an aqueous asymmetric supercapacitor. ACS Appl Mater Interfaces 13:33083–33090. https://doi.org/10.1021/acsami.1c08161

    Article  CAS  PubMed  Google Scholar 

  68. Lima RMAP, Dos Reis GS, Thyrel M, Alcaraz-Espinoza JJ, Larsson SH, de Oliveira HP (2022) Facile synthesis of sustainable biomass-derived porous biochars as promising electrode materials for high-performance supercapacitor applications. Nanomaterials 12:866. https://doi.org/10.3390/nano12050866

  69. Zhang L, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531. https://doi.org/10.1039/b813846j

    Article  CAS  PubMed  Google Scholar 

  70. Bo X, Xiang K, Zhang Y, Shen Y, Chen S, Wang Y, Xie M, Guo X (2019) Microwave-assisted conversion of biomass wastes to pseudocapacitive mesoporous carbon for high-performance supercapacitor. J Energy Chem 39:1–7. https://doi.org/10.1016/j.jechem.2019.01.006

    Article  Google Scholar 

Download references

Funding

The work was supported by the Project of Department of Science and Technology of Sichuan Province (2022NSFSC0033), National Natural Science Foundation of China (52272042), and Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University) (2020YFG0212).

Author information

Authors and Affiliations

Authors

Contributions

JY: data curation, writing—original draft. QF: conceptualization, methodology, writing—review and editing. AY: software. CX: validation. FZ: investigation. XC: methodology, software. WZ: methodology. JC: supervision.

Corresponding author

Correspondence to Qingshan Fu.

Ethics declarations

Ethical Approval

“Not applicable” in our submission.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Fu, Q., Ye, A. et al. A pre-burning treatment facilitating formation of pores in biochars and reinforcing their electrochemical performance in supercapacitor. Ionics 30, 1677–1690 (2024). https://doi.org/10.1007/s11581-023-05364-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05364-6

Keywords

Navigation