Skip to main content
Log in

Performance study of sodium alginate (SA) with lithium chloride (LiCl)-based solid-state membrane as an electrolyte in electrochemical device application

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this article, we present a novel solid biopolymer-based membrane (BPM) with sodium alginate (SA) as host material incorporated with an ionic salt, lithium chloride (LiCl). Solid BPMs are prepared using the solution casting technique and used as an electrolyte in the fabrication of solid-state Li-ion conducting battery and coin cell. The X-ray diffraction (XRD) method has been carried out to analyze the crystalline/amorphous nature of the membrane. A Fourier transform infrared spectroscopy (FTIR) study is done to confirm the complex formation between the host biopolymer and salt. The ionic conductivity of all prepared BPMs is measured using AC impedance analysis, and the membrane with the composition of 15 mol% of SA:85 mol% of LiCl exhibits a high ionic conductivity of 3.06 × 10−2 S/cm. The glass transition temperature (Tg) of the prepared BPMs is examined using differential scanning calorimetry (DSC), and the membrane of 15 mol% of SA:85 mol% of LiCl exhibits a decreased Tg value of 54.33 °C. The thermal stability of the prepared membranes is studied using thermogravimetric analysis (TGA). Transference number measurement (TNM) is made to assure that the major charge carriers involved in transportation are ions. Using the highest ion conducting membrane as an electrolyte, a primary Li-ion conducting battery has been fabricated which results in an OCV of 1.91 V, and various loads are connected to observe the corresponding current drawn from the cell. A coin cell is constructed with the configuration of graphite (G) + tannic acid || 15 mol% of SA:85 mol% of LiCl || LiFePO4 + G + pinch of highest ion conducting membrane, and the galvanostatic charge–discharge (GCD) analysis is carried out to analyze the rechargeable nature of the prepared membrane and the performance of the coin cell, whereas the cell has undergone charge/discharge process for 200 cycles and resulted with an energy density of 13.94 Wh/Kg, power density of 1111.11 W/Kg, and specific capacitance of 100.40 F/g, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are not publicly available (the paper is still not published). But the data is available from the corresponding author upon reasonable request.

References

  1. Omer AM (2008) Energy, environment and sustainable development. Renew Sustain Energy Rev 12(9):2265–2300

    Article  MathSciNet  CAS  Google Scholar 

  2. Anderson MD, Carr DS (1993) Battery energy storage technologies. Proc IEEE 81(3):475–479

    Article  ADS  CAS  Google Scholar 

  3. Raza W, Ali F, Raza N, Luo Y, Kim KH, Yang J, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473

    Article  CAS  Google Scholar 

  4. Liu B, Zhang JG, Xu W (2018) Advancing lithium metal batteries. Joule 2(5):833–845

    Article  CAS  Google Scholar 

  5. Inda Y, Katoh T, Baba M (2007) Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics. J Power Sources 174(2):741–744

    Article  CAS  Google Scholar 

  6. Singh MK, Chaurasia SK (2023) Recent progress on materials, architecture, and performances of hybrid battery-supercapacitors. In: Smart SuperCapacitors, pp 477–500

  7. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4418

    Article  CAS  PubMed  Google Scholar 

  8. Groce F, Gerace F, Dautzemberg G, Passerini S, Appetecchi GB, Scrosati B (1994) Synthesis and characterization of highly conducting gel electrolytes. Electrochim Acta 39(14):2187–2194

    Article  Google Scholar 

  9. Subbarao E (ed) (2012) Solid electrolytes and their applications. Springer Science and Business Media

    Google Scholar 

  10. Adachi GY, Imanaka N, Aono H (1996) Fast Li+ conducting ceramic electrolytes. Adv Mater 8(2):127–135

    Article  CAS  Google Scholar 

  11. Scrivens JH, Jackson AT (2000) Characterisation of synthetic polymer systems. Int J Mass Spectrom 200(1–3):261–276

    Article  CAS  Google Scholar 

  12. Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Testing 21(4):433–442

    Article  Google Scholar 

  13. Wan Y, Creber KA, Peppley B, Bui VT (2006) Chitosan-based solid electrolyte composite membranes: I. Preparation and characterization. J Membrane Sci 280(1–2):666–674

    Article  CAS  Google Scholar 

  14. Rajendran S, Saratha R (2021) An evaluation of solid-state electrolyte based on pectin and lithium bis (trifluoromethanesulphonyl) imide for lithium-ion batteries. Mater Today: Proc 47:819–824

    CAS  Google Scholar 

  15. Isfahani VB, Pereira RF, Fernandes M, Sabadini RC, Pereira S, Dizaji HR, Arab A, Fortunato E, Pawlicka A, Rego R, de Zea Bermudez V (2021) Gellan-gum and LiTFSI-based solid polymer electrolytes for electrochromic devices. ChemistrySelect 6(20):5110–5119

    Article  CAS  Google Scholar 

  16. Hazaana SA, Joseph A, Selvasekarapandian S, Naachiyar RM, Vignesh NM (2023) Performance of solid-state Li-ion conducting battery using biopolymer electrolyte based on agar–agar/lithium chloride. J Solid State Electrochem 27(2):539–557

    Article  CAS  Google Scholar 

  17. Sudhakar YN, Krishna Bhat D, Selvakumar M (2016) Ionic conductivity and dielectric studies of acid doped cellulose acetate propionate solid electrolyte for supercapacitor. Polym Eng Sci 56(2):196–203

    Article  CAS  Google Scholar 

  18. Diana MI, Selvasekarapandian S, Selvin PC, Krishna MV (2022) A physicochemical elucidation of sodium perchlorate incorporated alginate biopolymer: toward all-solid-state sodium-ion battery. J Mater Sci 57(17):8211–8224

    Article  ADS  CAS  Google Scholar 

  19. dos Santos LL (2017) Natural polymeric biomaterials: processing and properties

  20. de Lira FR, de Oliveira RS, da Silva Jr JH, Da Silva DR, Cavalcante MG (2022) Synthesis of a solid polymer electrolyte in the form of a self-sustainable membrane: sodium alginate and lithium perchlorate. J Therm Anal Calorim 147(10):5701–5717

    Article  Google Scholar 

  21. Leena Chandra MV, Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S (2017) Study of PVAc-PMMA-LiCl polymer blend electrolyte and the effect of plasticizer ethylene carbonate and nanofiller titania on PVAc-PMMA-LiCl polymer blend electrolyte. J Polym Eng 37(6):617–631

    Article  CAS  Google Scholar 

  22. Vanitha N, Shanmugapriya C, Selvasekarapandian S, Naachiyar RM, Krishna MV, Aafrin Hazaana S, Ramaswamy M (2022) Effect of graphene quantum dot on sodium alginate with ammonium formate (NH4HCO2) biopolymer electrolytes for the application of electrochemical devices. Ionics 28(6):2731–2749

    Article  CAS  Google Scholar 

  23. Vanitha N, Shanmugapriya C, Selvasekarapandian S, Krishna MV, Nandhini K (2022) Investigation of N-S-based graphene quantum dot on sodium alginate with ammonium thiocyanate (NH4SCN) biopolymer electrolyte for the application of electrochemical devices. J Mater Sci: Mater Electron 33(18):14847–14867

    CAS  Google Scholar 

  24. Fuzlin AF, Samsudin AS (2021) Studies on favorable ionic conduction and structural properties of biopolymer electrolytes system-based alginate. Polym Bull 78:2155–2175

    Article  CAS  Google Scholar 

  25. Fuzlin AF, Saadiah MA, Yao Y, Nagao Y, Samsudin AS (2020) Enhancing proton conductivity of sodium alginate doped with glycolic acid in bio-based polymer electrolytes system. J Polym Res 27:1–16

    Article  Google Scholar 

  26. Aafrin Hazaana S, Joseph A, Selvasekarapandian S, Meera Naachiyar R, Vengadesh Krishna M, Muniraj Vignesh N (2023) Development and characterization of biopolymer electrolyte based on gellan gum (GG) with lithium chloride (LiCl) for the application of electrochemical devices. Polym Bull 80(5):5291–5311

    Article  CAS  Google Scholar 

  27. Chitra R, Sathya P, Selvasekarapandian S, Meyvel S (2020) Synthesis and characterization of iota-carrageenan biopolymer electrolyte with lithium perchlorate and succinonitrile (plasticizer). Polym Bull 77(3):1555–1579

    Article  CAS  Google Scholar 

  28. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer 37(8):1371–1376

    Article  CAS  Google Scholar 

  29. Lopez-Rubio A, Flanagan BM, Gilbert EP, Gidley MJ (2008) A novel approach for calculating starch crystallinity and its correlation with double helix content: a combined XRD and NMR study. Biopolymers: Original Res Biomol 89(9):761–768

    Article  CAS  Google Scholar 

  30. Sangeetha P, Selvakumari TM, Selvasekarapandian S, Srikumar SR, Manjuladevi R, Mahalakshmi M (2020) Preparation and characterization of biopolymer K-carrageenan with MgCl2 and its application to electrochemical devices. Ionics 26:233–244

    Article  CAS  Google Scholar 

  31. Im J, Halat DM, Fang C, Hickson DT, Wang R, Balsara NP, Reimer JA (2022) Understanding the solvation structure of Li-ion battery electrolytes using DFT-based computation and 1H NMR spectroscopy. J Phys Chem B 126(47):9893–9900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Selvasekarapandian S, Hema M, Kawamura J, Kamishima O, Baskaran R (2010) Characterization of PVA–NH4NO3 polymer electrolyte and its application in rechargeable proton battery. J Phys Soc Japan 79(Suppl. A):163–168

    Article  ADS  Google Scholar 

  33. Kim DW, Park JK, Rhee HW, Kim HD (1994) Ionic conductivity and 7Li NMR study of solid polymer electrolytes based on polyetherurethane copolymer networks. Polym J 26(9):993–1001

    Article  CAS  Google Scholar 

  34. García Y, Porcarelli L, Zhu H, Forsyth M, Mecerreyes D, O'Dell LA (2023) Probing disorder and dynamics in composite electrolytes of an organic ionic plastic crystal and lithium functionalised acrylic polymer nanoparticles. J Magn Reson Open 14:100095

    Article  Google Scholar 

  35. Selvasekarapandian S, Hirankumar G, Kawamura J, Kuwata N, Hattori T (2005) 1H solid state NMR studies on the proton conducting polymer electrolytes. Mater Lett 59(22):2741–2745

    Article  CAS  Google Scholar 

  36. Ramesh S, Arof AK (2001) Ionic conductivity studies of plasticized poly (vinyl chloride) polymer electrolytes. Mater Sci Eng, B 85(1):11–15

    Article  Google Scholar 

  37. Hafiza MN, Isa MIN (2014) Ionic conductivity and conduction mechanism studies of CMC/chitosan biopolymer blend electrolytes. Res J Recent Sci, ISSN 2277:2502

    Google Scholar 

  38. Boukamp BA (1986) A package for impedance/admittance data analysis. Solid State Ionics 18:136–140

    Article  Google Scholar 

  39. Chitra R, Sathya P, Selvasekarapandian S, Monisha S, Moniha V, Meyvel S (2019) Synthesis and characterization of iota-carrageenan solid biopolymer electrolytes for electrochemical applications. Ionics 25(5):2147–2157

    Article  CAS  Google Scholar 

  40. Choudhury S, Stalin S, Vu D, Warren A, Deng Y, Biswal P, Archer LA (2019) Solid-state polymer electrolytes for high-performance lithium metal batteries. Nat Commun 10(1):4398

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. Polu AR, Kumar R (2013) Preparation and characterization of PVA based solid polymer electrolytes for electrochemical cell applications. Chin J Polym Sci 31:641–648

    Article  CAS  Google Scholar 

  42. Manjuladevi R, Thamilselvan M, Selvasekarapandian S, Mangalam R, Premalatha M, Monisha S (2017) Mg-ion conducting blend polymer electrolyte based on poly (vinyl alcohol)-poly (acrylonitrile) with magnesium perchlorate. Solid State Ionics 308:90–100

    Article  CAS  Google Scholar 

  43. Arockia Mary I, Selvanayagam S, Selvasekarapandian S, Chitra R, Leena Chandra MV, Ponraj T (2020) Lithium ion conducting biopolymer membrane based on K-carrageenan with LiNO3. Ionics 26:4311–4326

    Article  CAS  Google Scholar 

  44. Perumal P, Christopher Selvin P, Selvasekarapandian S (2018) Characterization of biopolymer pectin with lithium chloride and its applications to electrochemical devices. Ionics 24:3259–3270

    Article  CAS  Google Scholar 

  45. Wai Chun CN, Tajarudin HA, Ismail N, Azahari B, Makhtar MZ, M. (2021) Elucidation of mechanical, physical, chemical and thermal properties of microbial composite films by integrating sodium alginate with Bacillus subtilis sp. Polymers 13(13):2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Flores-Hernández CG, Cornejo-Villegas MDLA, Moreno-Martell A, Del Real A (2021) Synthesis of a biodegradable polymer of poly (sodium alginate/ethyl acrylate). Polymers 13(4):504

    Article  PubMed  PubMed Central  Google Scholar 

  47. SiddaramaiahSwamy TM, Ramaraj B, Lee JH (2008) Sodium alginate and its blends with starch: thermal and morphological properties. J Appl Polym Sci 109(6):4075–4081

    Article  Google Scholar 

  48. Prodromakis T, Papavassiliou C (2009) Engineering the Maxwell-Wagner polarization effect. Appl Surf Sci 255(15):6989–6994

    Article  ADS  CAS  Google Scholar 

  49. Sampath Kumar L, Christopher Selvin P, Selvasekarapandian S (2021) Impact of lithium triflate (LiCF3SO3) salt on tamarind seed polysaccharide-based natural solid polymer electrolyte for application in electrochemical device. Polym Bull 78:1797–1819

    Article  CAS  Google Scholar 

  50. Munshi MZA, Owens BB, Nguyen S (1988) Measurement of Li+ ion transport numbers in poly (ethylene oxide)–LiX complexes. Polym J 20(7):597–602

    Article  CAS  Google Scholar 

  51. Jenova I, Venkatesh K, Karthikeyan S, Madeswaran S, Arivanandhan M, Joice SD (2021) Characterization of solid polymer electrolyte based on gum tragacanth and lithium nitrate. Polym-Plast Technol Mater 60:1898–1912

    Google Scholar 

  52. Sundaramahalingam K, Muthuvinayagam M, Nallamuthu N, Vanitha D, Vahini M (2019) Investigations on lithium acetate-doped PVA/PVP solid polymer blend electrolytes. Polym Bull 76:5577–5602

    Article  CAS  Google Scholar 

  53. Arockia Mary I, Selvanayagam S, Selvasekarapandian S, Srikumar SR, Ponraj T, Moniha V (2019) Lithium ion conducting membrane based on K-carrageenan complexed with lithium bromide and its electrochemical applications. Ionics 25(12):5839–5855

    Article  CAS  Google Scholar 

  54. Jiang H, Yang L, Li C, Yan C, Lee PS, Ma J (2011) High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy Environ Sci 4(5):1813–1819

    Article  CAS  Google Scholar 

  55. Ma SB, Nam KW, Yoon WS, Yang XQ, Ahn KY, Oh KH, Kim KB (2007) A novel concept of hybrid capacitor based on manganese oxide materials. Electrochem Commun 9(12):2807–2811

    Article  CAS  Google Scholar 

  56. Ni J, Wang H, Qu Y, Gao L (2013) PbO2 electrodeposited on graphite for hybrid supercapacitor applications. Phys Scr 87(4):045802

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the project fund received under the DST CURIE core grant for Women PG Colleges DST/CURIE-PG/2022/11.

Funding

The authors declare that no funds were received during the groundwork of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The entire work has been done by Aafrin Hazaana S and the full manuscript is written by Aafrin Hazaana S. The full manuscript has been corrected by Ancemma Joseph. The concept of the work is given by Selvasekarapandian S. AC Impedance analysis has been done by Meera Naachiyar R. Instrument support & GCD analysis is done by Balasubramanian G. NMR analysis has been done by ArunKumar Dorai and Nithya Heller. Transference Number Measurement is done by Muniraj Vignesh N.

Corresponding authors

Correspondence to Joseph Ancemma or S. Selvasekarapandian.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazaana, S.A., Ancemma, J., Selvasekarapandian, S. et al. Performance study of sodium alginate (SA) with lithium chloride (LiCl)-based solid-state membrane as an electrolyte in electrochemical device application. Ionics 30, 1413–1435 (2024). https://doi.org/10.1007/s11581-023-05350-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05350-y

Keywords

Navigation