Skip to main content
Log in

Mg2+ ion-conducting ceramic solid electrolytes based on Moringa oleifera seed and magnesium nitrate for secondary magnesium battery applications

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The increasing demand for the replacement of Li-ion batteries places Mg-based batteries in prime research focus. Development of highly efficient Mg2+ ion conducting electrolyte has been demanded to overcome the drawbacks of Li-ion conducting electrolytes. An attempt is made to develop Mg2+ ion conducting electrolyte using biomaterial Moringa oleifera seed. In this study, Moringa oleifera (MO) seed–based biomaterial membranes, utilizing ZnO as ceramic filler, and Mg(NO3)2 ·6H2O as an ionic donor, are prepared using simple solution casting method and a secondary Mg battery coin cell is constructed. The XRD results shows the membrane MOZM3 has high amorphous nature than other prepared membranes. Furthermore, the above membrane also shows lowest glass transition temperature (41.03 °C) as measured by differential scanning calorimetry technique. The AC impedance spectroscopy indicates that the membrane MOZM3 gives the highest ionic conductivity of 6.53 × 10−3 S/cm at room temperature. The transport parameters such as charge carrier value (N), diffusion coefficient (D), mobility (µ), and relaxation time (τ) are calculated by using equivalent circuit fitting method. By utilizing the highest ion conducting membrane as a solid membrane electrolyte, a magnesium battery has been constructed and the open circuit voltage of 1.72 V is observed. The secondary Mg CR2032 coin cell is fabricated, and its charge/discharge properties are studied using GCD technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during the current study are not publicly available as the paper is not yet published. However, the data are available from the corresponding author on reasonable request.

References

  1. Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2(7):710–721

    Article  CAS  Google Scholar 

  2. Parker JF, Chervin CN, Pala IR, Machler M, Burz MF, Long JW, Rolison DR (2017) Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356(6336):415–418

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603

    Article  CAS  Google Scholar 

  4. Bella F, De Luca S, Fagiolari L, Versaci D, Amici J, Francia C, Bodoardo S (2021) An overview on anodes for magnesium batteries: challenges towards a promising storage solution for renewables. Nanomaterials 11(3):810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guo M, Yuan C, Zhang T, Yu X (2022) Solid-state electrolytes for rechargeable magnesium-ion batteries: from structure to mechanism. Small 18(43):2106981

    Article  CAS  Google Scholar 

  6. Liu F, Wang T, Liu X, Fan LZ (2021) Challenges and recent progress on key materials for rechargeable magnesium batteries. Adv Energy Mater 11(2):2000787

    Article  CAS  Google Scholar 

  7. Mao M, Gao T, Hou S, Wang C (2018) A critical review of cathodes for rechargeable Mg batteries. Chem Soc Rev 47(23):8804–8841

    Article  CAS  PubMed  Google Scholar 

  8. Wei C, Tan L, Zhang Y, Wang Z, Feng J, Qian Y (2022) Towards better Mg metal anodes in rechargeable Mg batteries: challenges, strategies, and perspectives. Energy Storage Mater 52:299–319

  9. Song J, Chen J, Xiong X, Peng X, Chen D, Pan F (2022) Research advances of magnesium and magnesium alloys worldwide in 2021. J Magn Alloys 10(4):863–898

    Article  CAS  Google Scholar 

  10. Zhang R, Ling C (2016) Status and challenge of Mg battery cathode. MRS Energy Sustain 3:E1

    Article  Google Scholar 

  11. Hsu C-J, Chou C-Y, Yang C-H, Lee T-C, Chang J-K (2016) MoS 2/graphene cathodes for reversibly storing Mg 2+ and Mg 2+/Li+ in rechargeable magnesium-anode batteries. Chem Commun 52(8):1701–1704

    Article  CAS  Google Scholar 

  12. Xiong Z, Zhu G, Wu H, Shi G, Xu P, Yi H, Mao Y, Wang B, Yu X (2022) Hydrochloric acid-assisted synthesis of highly dispersed MoS2 nanoflowers as the cathode material for Mg-Li batteries. ACS Appl Energy Mater 5(5):6274–6281

    Article  CAS  Google Scholar 

  13. Liu Y, Fan L-Z, Jiao L (2017) Graphene intercalated in graphene-like MoS2: a promising cathode for rechargeable Mg batteries. J Power Sources 340:104–110

    Article  CAS  Google Scholar 

  14. Zhan Y, Zhang W, Lei B, Liu H, Li W (2020) Recent development of Mg ion solid electrolyte. Front Chem 8:125

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Li Y, Xu D, Zhang D, Wei Y, Qu D, Guo Y (2019) Study on MXene-supported layered TiS2 as cathode materials for magnesium batteries. Int J Electrochem Sci 14:11102–11109

    Article  CAS  Google Scholar 

  16. Sun X, Bonnick P, Nazar LF (2016) Layered TiS2 positive electrode for Mg batteries. ACS Energy Lett 1(1):297–301

    Article  CAS  Google Scholar 

  17. Kisu K, Kim S, Inukai M, Oguchi H, Takagi S, Orimo S-I (2020) Magnesium borohydride ammonia borane as a magnesium ionic conductor. ACS Appl Energy Mater 3(4):3174–3179

    Article  CAS  Google Scholar 

  18. Canepa P, Bo S, Gopalakrishnan S, Key B, Richards W, Tan S, Tian Y, Wang Y, Li J, Ceder G (2017) High magnesium mobility in ternary spinel chalcogenides, accepted in Nat. Commun 8:1759

    Google Scholar 

  19. Sotoudeh M, Dillenz M, Groß A (2021) Mechanism of magnesium transport in spinel chalcogenides. Adv Energy Sustain Res 2(12):2100113

    Article  CAS  Google Scholar 

  20. Park B, Schaefer JL (2020) Polymer electrolytes for magnesium batteries: forging away from analogs of lithium polymer electrolytes and towards the rechargeable magnesium metal polymer battery. J Electrochem Soc 167(7):070545

    Article  Google Scholar 

  21. Reddy MJ, Chu PP (2002) Ion pair formation and its effect in PEO: Mg solid polymer electrolyte system. J Power Sources 109(2):340–346

    Article  Google Scholar 

  22. Polu AR, Kumar R (2013) Preparation and characterization of pva based solid polymer electrolytes for electrochemical cell applications. Chin J Polym Sci 31:641–648

    Article  CAS  Google Scholar 

  23. Jeyabanu K, Sundaramahalingam K, Devendran P, Manikandan A, Nallamuthu N (2019) Effect of electrical conductivity studies for CuS nanofillers mixed magnesium ion based PVA-PVP blend polymer solid electrolyte. Physica B 572:129–138

    Article  CAS  ADS  Google Scholar 

  24. Ahmad AH, Ghani FA (2009) Conductivity and structural studies of magnesium based solid electrolytes. In AIP Conf Proc. Am Inst Phys 1136:31–35

  25. Anilkumar K, Jinisha B, Manoj M, Jayalekshmi S (2017) Poly (ethylene oxide)(PEO)–poly (vinyl pyrrolidone)(PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. Eur Polymer J 89:249–262

    Article  CAS  Google Scholar 

  26. Singh D, Singh J, Kumar P, Veer D, Kumar D, Katiyar RS, Kumar A, Kumar A (2021) The influence of TiO2 on the proton conduction and thermal stability of CsH2PO4 composite electrolytes. S Afr J Chem Eng 37:227–236

    Google Scholar 

  27. Ma Y, Bi R, Yang M, Wei P, Qi J, Wang J, Yu R, Wang D (2023) Hollow multishelled structural ZnO fillers enhance the ionic conductivity of polymer electrolyte for lithium batteries. J Nanopart Res 25(1):14

    Article  CAS  Google Scholar 

  28. Wang Z, Ding L, Yu S, Xu H, Hao X, Sun Y, He T (2022) Effect of two different ZnO addition strategies on the sinterability and conductivity of the BaZr0. 4Ce0. 4Y0. 2O3− δ proton-conducting ceramic electrolyte. ACS Appl Energy Mater 5(3):3369–3379

    Article  CAS  Google Scholar 

  29. Alipoori S, Mazinani S, Aboutalebi SH, Sharif F (2020) Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: opportunities and challenges. J Energy Storage 27:101072

    Article  Google Scholar 

  30. Xiao Z, Long T, Song L, Zheng Y, Wang C (2022) Research progress of polymer-inorganic filler solid composite electrolyte for lithium-ion batteries. Ionics 28:15–26

  31. Fu W, Zhang R, Li B, Chen L (2013) Hydrogen bond interaction and dynamics in PMMA/PVPh polymer blends as revealed by advanced solid-state NMR. Polymer 54(1):472–479

    Article  CAS  Google Scholar 

  32. Wang Y, Wu L, Lin Z, Tang M, Ding P, Guo X, Zhang Z, Liu S, Wang B, Yin X (2022) Hydrogen bonds enhanced composite polymer electrolyte for high-voltage cathode of solid-state lithium battery. Nano Energy 96:107105

    Article  CAS  Google Scholar 

  33. Wang C, Yang T, Zhang W, Huang H, Gan Y, Xia Y, He X, Zhang J (2022) Hydrogen bonding enhanced SiO 2/PEO composite electrolytes for solid-state lithium batteries. J Mater Chem A 10(7):3400–3408

    Article  CAS  Google Scholar 

  34. Alatawi NS, Abdelghany A, Elsayed NH (2017) The correlation between density functional theory (DFT) and spectroscopic investigations of PVA/PVP nanocomposites containing gold nanoparticles. Res J Pharm Biol Chem Sci 8(3):263–272

    CAS  Google Scholar 

  35. Lakshmipriya G, Santhosh Kumar D (2016) Moringa oleifera: Una revisión sobre la importancia nutritiva y su aplicación medicinal. Ciencia Aliment Bienestar Humano 5(2):49–56

    Google Scholar 

  36. Bhattacharya A, Tiwari P, Sahu PK, Kumar S (2018) A review of the phytochemical and pharmacological characteristics of Moringa oleifera. J Pharm Bioallied Sci 10(4):181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dzuvor CK, Pan S, Amanze C, Amuzu P, Asakiya C, Kubi F (2022) Bioactive components from Moringa oleifera seeds: production, functionalities and applications—a critical review. Crit Rev Biotechnol 42(2):271–293

    Article  CAS  PubMed  Google Scholar 

  38. MunirajVignesh N, Jayabalakrishnan SS, Selvasekarapandian S, AafrinHazaana S, Kavitha P, Vengadesh Krishna M (2023) Proton-conducting Moringa oleifera seed-based biomaterial electrolyte for electrochemical applications. Ionics 29(1):331–344

    Article  Google Scholar 

  39. Reck IM, Paixao RM, Bergamasco R, Vieira MF, Vieira AMS (2018) Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. J Clean Prod 171:85–97

    Article  CAS  Google Scholar 

  40. Araújo CS, Carvalho DC, Rezende HC, Almeida IL, Coelho LM, Coelho NM, Marques TL, Alves VN (2013) Bioremediation of waters contaminated with heavy metals using Moringa oleifera seeds as biosorbent. Appl Bioremediation-active Passive Approaches 23:227–255

    Google Scholar 

  41. Babayevska N, Przysiecka Ł, Iatsunskyi I, Nowaczyk G, Jarek M, Janiszewska E, Jurga S (2022) ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Sci Rep 12(1):8148

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Sulaiman M, Rahman A, Mohamed N (2013) Structural, thermal and conductivity studies of magnesium nitrate–alumina composite solid electrolytes prepared via sol-gel method. Int J Electrochem Sci 8:6647–6655

    Article  CAS  Google Scholar 

  43. Hodge R, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer 37(8):1371–1376

    Article  CAS  Google Scholar 

  44. He X, Shi Q, Zhou X, Wan C, Jiang C (2005) In situ composite of nano SiO2–P (VDF-HFP) porous polymer electrolytes for Li-ion batteries. Electrochim Acta 51(6):1069–1075

    Article  CAS  Google Scholar 

  45. Xiong G, Pal U, Serrano J, Ucer K, Williams R (2006) Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Phys Status Solidi c 3(10):3577–3581

    Article  CAS  ADS  Google Scholar 

  46. Raja K, Ramesh P, Geetha D (2014) Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method. Spectrochim Acta Part A Mol Biomol Spectrosc 131:183–188

    Article  CAS  ADS  Google Scholar 

  47. Sheha E, El-Deftar M (2018) Magnesium hexakis (methanol)-dinitrate complex electrolyte for use in rechargeable magnesium batteries. J Solid State Electrochem 22:2671–2679

    Article  CAS  Google Scholar 

  48. Araújo CST, Melo EI, Alves VN, Coelho NMM (2010) Moringa oleifera Lam. seeds as a natural solid adsorbent for removal of AgI in aqueous solutions. J Braz Chem Soc 21:1727–1732

    Article  Google Scholar 

  49. Naachiyar RM, Ragam M, Selvasekarapandian S, Krishna MV, Buvaneshwari P (2021) Development of biopolymer electrolyte membrane using Gellan gum biopolymer incorporated with NH4SCN for electro-chemical application. Ionics 27(8):3415–3429

    Article  CAS  Google Scholar 

  50. Tang Y, Yuan W, Pan M, Wan Z (2010) Feasibility study of porous copper fiber sintered felt: a novel porous flow field in proton exchange membrane fuel cells. Int J Hydrogen Energy 35(18):9661–9677

    Article  CAS  Google Scholar 

  51. Zhao X, Gnanaseelan M, Jehnichen D, Simon F, Pionteck J (2019) Green and facile synthesis of polyaniline/tannic acid/rGO composites for supercapacitor purpose. J Mater Sci 54(15):10809–10824

    Article  CAS  ADS  Google Scholar 

  52. Reck IM, Paixão RM, Bergamasco R, Vieira MF, Vieira AMS (2018) Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. J Clean Prod 171:85–97

    Article  CAS  Google Scholar 

  53. Sundaraganesan N, Ilakiamani S, Saleem H, Mohan S (2004) FT-Raman, FTIR spectra and normal coordinate analysis of 5-bromo-2-nitropyridine. Indian J Pure Appl Phys 42:585–590

    CAS  Google Scholar 

  54. Selvasekarapandian S, Baskaran R, Kamishima O, Kawamura J, Hattori T (2006) Laser Raman and FTIR studies on Li+ interaction in PVAc–LiClO4 polymer electrolytes. Spectrochim Acta Part A Mol Biomol Spectrosc 65(5):1234–1240

    Article  CAS  ADS  Google Scholar 

  55. Koliyoor J, Hegde IS, Vasachar R, Sanjeev G (2022) Novel solid biopolymer electrolyte based on methyl cellulose with enhanced ion transport properties. J Appl Polym Sci 139(12):51826

    Article  CAS  Google Scholar 

  56. Bhuvaneswari B, Sivabharathy M, Prasad LG, Selvasekarapandian S (2022) Structural, thermal and electrochemical characterization of cellulose acetate–based solid biopolymer electrolyte for zinc ion batteries. Ionics 28(8):3865–3875

    Article  CAS  Google Scholar 

  57. Manjuladevi R, Thamilselvan M, Selvasekarapandian S, Mangalam R, Premalatha M, Monisha S (2017) Mg-ion conducting blend polymer electrolyte based on poly (vinyl alcohol)-poly (acrylonitrile) with magnesium perchlorate. Solid State Ionics 308:90–100

    Article  CAS  Google Scholar 

  58. Mahalakshmi M, Selvanayagam S, Selvasekarapandian S, Chandra ML, Sangeetha P, Manjuladevi R (2020) Magnesium ion-conducting solid polymer electrolyte based on cellulose acetate with magnesium nitrate (Mg (NO3) 2· 6H2O) for electrochemical studies. Ionics 26(9):4553–4565

    Article  CAS  Google Scholar 

  59. Bondarenko AS, Ragoisha GA (2005) In Progress in chemometrics research, 1st edn. Nova Science Publishers, New York, pp 89–102

  60. Bockris JM, Reddy AK (1998) Modern electrochemistry—volume 1, 2nd edn. Kluwer Academic Publishers, New York, pp 1–34

  61. Srivastava N, Kumar M (2016) Ion dynamics and relaxation behavior of NaPF 6-doped polymer electrolyte systems. J Solid State Electrochem 20:1421–1428

    Article  CAS  Google Scholar 

  62. Arof A, Naeem M, Hameed F, Jayasundara W, Careem M, Teo L, Buraidah M (2014) Quasi solid state dye-sensitized solar cells based on polyvinyl alcohol (PVA) electrolytes containing I^-/I _ 3^-I-/I 3-redox couple. Opt Quant Electron 46:143–154

    Article  CAS  Google Scholar 

  63. Jayathilaka P, Dissanayake M, Albinsson I, Mellander B-E (2003) Dielectric relaxation, ionic conductivity and thermal studies of the gel polymer electrolyte system PAN/EC/PC/LiTFSI. Solid State Ionics 156(1–2):179–195

    Article  CAS  Google Scholar 

  64. Manjuladevi R, Thamilselvan M, Subramanian S, Mangalam R, Manavalan P, Sampath M (2017) Mg-ion conducting blend polymer electrolyte based on poly(vinyl alcohol)-poly (acrylonitrile) with magnesium perchlorate. Solid State Ionics 308:90–100

    Article  CAS  Google Scholar 

  65. Sheha E, Liu F, Wang T, Farrag M, Liu J, Yacout N, Kebede MA, Sharma N, Fan L-Z (2020) Dual polymer/liquid electrolyte with BaTiO3 electrode for magnesium batteries. ACS Appl Energy Mater 3(6):5882–5892

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Muniraj @ Vignesh N has done the whole work and written the entire manuscript. S.S.Jayabalakrishnan has corrected the entire manuscript. Selvasekarapandian S has given the concept for the work. Primary battery construction has been done by Kavitha P. AC impedance analysis has been done by Aafrin Hazaana S. Linear Sweep Voltammetry study has been done by Meera Naachiyar R.

Corresponding author

Correspondence to S. Selvasekarapandian.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2223 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignesh, N.M., Jayabalakrishnan, S.S., Selvasekarapandian, S. et al. Mg2+ ion-conducting ceramic solid electrolytes based on Moringa oleifera seed and magnesium nitrate for secondary magnesium battery applications. Ionics 30, 1469–1488 (2024). https://doi.org/10.1007/s11581-023-05347-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05347-7

Keywords

Navigation