Skip to main content
Log in

Scaffolded hierarchical CeVO4/V2CTx-MXene cathode for flexible quasi-solid-state aqueous zinc-ion battery

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The scaffolded hierarchical CeVO4/V2CTx-MXene composite is harvested to boost the performance of vanadium oxides in aqueous zinc-ion batteries. Benefiting from the high electronic-ion conductivity of V2CTx-MXene and the multilayered structure of the composite, CeVO4/V2CTx-Mxene cathode depicts the advantages of the acceptable zinc storage and ionic reaction kinetics. Compared with pure CeVO4, CeVO4/V2CTx-MXene cathode shows a reversible discharge capacity of 295.0 mAh g−1 at 1 A g−1, capacity retention of 81.6% over 3000 cycles at 5 A g−1, and good high-rate performance of 233.5 mAh g−1 at 8 A g−1. The quasi-solid-state batteries of CeVO4/V2CTx-MXene demonstrate well mechanical deformability and good cycling performance. This work provides a reference for solving the problem of vanadium-based materials for aqueous zinc-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated and analyzed during this study are available from the corresponding author on reasonable request.

References

  1. Sun W, Wang F, Hou S, Yang C, Fan X, Ma Z, Gao T, Han F, Hu R, Zhu M, Wang C (2017) Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J Am Chem Soc 139(29):9775–9778

    Article  CAS  PubMed  Google Scholar 

  2. Batyrbekuly D, Cajoly S, Laïk B, Pereira-Ramos J-P, Emery N, Bakenov Z, Baddour-Hadjean R (2020) Mechanistic investigation of a hybrid Zn/V2O5 rechargeable battery with a binary Li+/Zn2+ aqueous electrolyte. Chemsuschem 13(4):724–731

    Article  CAS  PubMed  Google Scholar 

  3. Chao D, Zhou W, Ye C, Zhang Q, Chen Y, Gu L, Davey K, Qiao S-Z (2019) An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew Chem Int Ed 58(23):7823–7828

    Article  CAS  Google Scholar 

  4. Qin R, Wang Y, Zhang M, Wang Y, Ding S, Song A, Yi H, Yang L, Song Y, Cui Y, Liu J, Wang Z, Li S, Zhao Q, Pan F (2021) Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 80:105478

    Article  CAS  Google Scholar 

  5. Tie Z, Niu Z (2020) Design strategies for high-performance aqueous Zn/organic batteries. Angew Chem Int Ed 59(48):21293–21303

    Article  CAS  Google Scholar 

  6. Gao P, Ru Q, Yan H, Cheng S, Liu Y, Hou X, Wei L, Chi-Chung Ling F (2020) A durable Na0.56V2O5 nanobelt cathode material assisted by hybrid cationic electrolyte for high-performance aqueous zinc-ion batteries. ChemElectroChem 7(1):283–288

    Article  CAS  Google Scholar 

  7. Song M, Tan H, Chao D, Fan HJ (2018) Recent advances in Zn-ion batteries. Adv Func Mater 28(41):1802564

    Article  Google Scholar 

  8. Soundharrajan V, Sambandam B, Kim S, Alfaruqi MH, Putro DY, Jo J, Kim S, Mathew V, Sun Y-K, Kim J (2018) Na2V6O16·3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett 18(4):2402–2410

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Yan H, Ru Q, Gao P, Shi Z, Gao Y, Chen F, Chi-Chun Ling F, Wei L (2020) Organic pillars pre-intercalated V4+-V2O5·3H2O nanocomposites with enlarged interlayer and mixed valence for aqueous Zn-ion storage. Appl Surf Sci 534:147608

    Article  CAS  Google Scholar 

  10. Yi Z, Chen G, Hou F, Wang L, Liang J (2021) Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv Energy Mater 11(1):2003065

    Article  CAS  Google Scholar 

  11. Liu Y, Pan Z, Tian D, Hu T, Jiang H, Yang J, Sun J, Zheng J, Meng C, Zhang Y (2020) Employing “one for two” strategy to design polyaniline-intercalated hydrated vanadium oxide with expanded interlayer spacing for high-performance aqueous zinc-ion batteries. Chem Eng J 399:125842

    Article  CAS  Google Scholar 

  12. Wang PJ, Shi XD, Wu ZX, Guo S, Zhou J, Liang SQ (2020) Layered hydrated vanadium oxide as highly reversible intercalation cathode for aqueous Zn-ion batteries. Carbon Energy 2(2):294–301

    Article  CAS  Google Scholar 

  13. Yan M, He P, Chen Y, Wang S, Wei Q, Zhao K, Xu X, An Q, Shuang Y, Shao Y, Mueller KT, Mai L, Liu J, Yang J (2018) Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv Mater 30(1):1703725

    Article  Google Scholar 

  14. Gao X, Yin W, Liu X (2021) Carbon nanotubes-based electrode for Zn ion batteries. Mater Res Bull 138:111246

    Article  CAS  Google Scholar 

  15. Kajiyama S, Szabova L, Iinuma H, Sugahara A, Gotoh K, Sodeyama K, Tateyama Y, Okubo M, Yamada A (2017) Enhanced Li-ion accessibility in MXene titanium carbide by steric chloride termination. Adv Energy Mater 7(9):1601873

    Article  Google Scholar 

  16. Zhang N, Jia M, Dong Y, Wang Y, Xu J, Liu Y, Jiao L, Cheng F (2019) Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries. Adv Func Mater 29(10):1807331

    Article  Google Scholar 

  17. Zhang Y, Tao L, Xie C, Wang D, Zou Y, Chen R, Wang Y, Jia C, Wang S (2020) Defect engineering on electrode materials for rechargeable batteries. Adv Mater 32(7):1905923

    Article  CAS  Google Scholar 

  18. Venkatkarthick R, Rodthongkum N, Zhang X, Wang S, Pattananuwat P, Zhao Y, Liu R, Qin J (2020) Vanadium-based oxide on two-dimensional vanadium carbide MXene (V2Ox@V2CTx) as cathode for rechargeable aqueous zinc-ion batteries. ACS Appl Energy Mater 3(5):4677–4689

    Article  CAS  Google Scholar 

  19. Chen J, Xiao B, Hu C, Chen H, Huang J, Yan D, Peng S (2022) Construction strategy of VO2@V2C 1D/2D heterostructure and improvement of zinc-ion diffusion ability in VO2 (B). ACS Appl Mater Interfaces 14(25):28760–28768

    Article  CAS  PubMed  Google Scholar 

  20. Wang WW, Hu RT, Zhang C, Tao Y, Ran L, Li YN, Yao OY, Yan J (2023) A stepwise oxidation strategy for the synthesis of amorphous V2O5@V2CTx nanohybrid cathodes toward high-performance aqueous Zn-ion batteries. J Mater Chem A 11(15):8224–8234

    Article  CAS  Google Scholar 

  21. Xu MY, Wu TL, Qi J, Zhou D, Xiao ZB (2021) V2C/VO2 nanoribbon intertwined nanosheet dual heterostructure for highly flexible and robust lithium-sulfur batteries. J Mater Chem A 9(37):21429–21439

    Article  CAS  Google Scholar 

  22. Liu H, Chang J (2020) CeVO4 yolk-shell microspheres constructed by nanosheets with enhanced lithium storage performances. J Alloy Compd 849:156682

    Article  CAS  Google Scholar 

  23. Yang XQ, Wu HM, Wang SQ, Cheng FY, Feng CQ, Liu KK (2020) Synthesis and electrochemical properties of CeVO4/Fe3O4 as a novel anode material for lithium-ion batteries. Ionics 26(10):4859–4867

    Article  CAS  Google Scholar 

  24. Li Y, Li K, Liu Y, Gong Y (2022) A cerium vanadate/S heterostructure for a long-life zinc-ion battery: efficient electron transfer by the anchored sulfur. Nanoscale 14(44):16673–16682

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Xiao X, Liu X, Cui LL, Gong Y (2022) Aluminium vanadate with unsaturated coordinated V centers and oxygen vacancies: surface migration and partial phase transformation mechanism in high performance zinc-ion batteries. J Mater Chem A 10(2):912–927

    Article  CAS  Google Scholar 

  26. Wang Z, Yu K, Feng Y, Qi R, Ren J, Zhu Z (2019) VO2(p)-V2C(MXene) grid structure as a lithium polysulfide catalytic host for high-performance Li-S battery. ACS Appl Mater Interfaces 11(47):44282–44292

    Article  CAS  PubMed  Google Scholar 

  27. Zhang N, Dong Y, Jia M, Bian X, Wang Y, Qiu M, Xu J, Liu Y, Jiao L, Cheng F (2018) Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett 3(6):1366–1372

    Article  CAS  Google Scholar 

  28. Malaki M, Maleki A, Varma RS (2019) MXenes and ultrasonication. J Mater Chem A 7(18):10843–10857

    Article  CAS  Google Scholar 

  29. Qin X-H, Du Y-H, Zhang P-C, Wang X-Y, Lu Q-Q, Yang A-k, Sun J-CJIJOM (2021) Metallurgy; materials, layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries. 28:1684–1692

  30. Zhu K, Sun Z, Liu P, Li H, Wang Y, Cao K, Jiao LJJoEC (2021) Intercalation engineering of layered vanadyl phosphates for high performance zinc-ion batteries. 63:239–245

  31. Wang W, Hu R, Zhang C, Tao Y, Ran L, Li Y, Ouyang Y, Yan JJJOMCA (2023) A stepwise oxidation strategy for the synthesis of amorphous V2O5@ V2CTx nanohybrid cathodes toward high-performance aqueous Zn-ion batteries. J Mater Chem A  11(15):8224–8234

    Article  CAS  Google Scholar 

  32. Chen J, Xiao B, Hu C, Chen H, Huang J, Yan D, Peng SJAAM (2022) Interfaces, construction strategy of VO2@ V2C 1D/2D heterostructure and improvement of zinc-ion diffusion ability in VO2 (B). ACS Appl Mater Interfaces 14(25):28760–28768

    Article  CAS  PubMed  Google Scholar 

  33. Hao K, Sheng Z, Qi P, Lu Y, Liu G, Chen M, Wu H, Tang Y (2023) Stable structure and fast ion diffusion: N-doped VO2 3D porous nanoflowers for applications in ultrafast rechargeable aqueous zinc-ion batteries. J Colloid Interface Sci 644:275–284

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Zheng J, Zhan C, Zhang K, Fu W, Nie Q, Zhang M, Shen ZJC (2022) Rapid electrochemical activation of V2O3@ C cathode for high-performance zinc-ion batteries in water-in-salt electrolyte. ChemSusChem 15(8):e202200075

    Article  CAS  PubMed  Google Scholar 

  35. Venkatkarthick R, Rodthongkum N, Zhang X, Wang S, Pattananuwat P, Zhao Y, Liu R, Qin JJAAEM (2020) Vanadium-based oxide on two-dimensional vanadium carbide MXene (V2Ox@ V2CTx) as cathode for rechargeable aqueous zinc-ion batteries. ACS Appl Energy Mater 3(5):4677–4689

    Article  CAS  Google Scholar 

  36. Jia D, Zheng K, Song M, Tan H, Zhang A, Wang L, Yue L, Li D, Li C, Liu JJNR (2020) VO2· 0.2 H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries. Nano Res 13:215–224

    Article  CAS  Google Scholar 

  37. Chen D, Lu M, Wang B, Cheng H, Yang H, Cai D, Han W, Fan HJJNE (2021) High-mass loading V3O7· H2O nanoarray for Zn-ion battery: new synthesis and two-stage ion intercalation chemistry. Nano Energy 83:105835

    Article  CAS  Google Scholar 

  38. Errandonea D (2020) High pressure crystal structures of orthovanadates and their properties. J Appl Phys 128(4)

  39. Liu H, Chang JJJOA (2020) Compounds, CeVO4 yolk-shell microspheres constructed by nanosheets with enhanced lithium storage performances. J Alloys Compd 849:156682

    Article  CAS  Google Scholar 

  40. Yang X, Wu H, Wang S, Cheng F, Feng C, Liu KJI (2020) Synthesis and electrochemical properties of CeVO4/Fe3O4 as a novel anode material for lithium-ion batteries. Ionics 26:4859–4867

    Article  CAS  Google Scholar 

  41. Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF (2016) A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy 1

  42. Narayanasamy M, Kirubasankar B, Shi MJ, Velayutham S, Wang B, Angaiah S, Yan C (2020) Morphology restrained growth of V2Oby the oxidation of V-MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries. Chem Commun 56(47):6412–6415

    Article  CAS  Google Scholar 

  43. Tang B, Fang G, Zhou J, Wang L, Lei Y, Wang C, Lin T, Tang Y, Liang S (2018) Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 51:579–587

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515011615; No. 2022A1515011802); the Scientific and Technological Plan of Guangdong Province, China (No. 2019B090905005); the Science and Technology Program of Guangzhou (No. 2019050001; No. 202201010701); the Project of the Department of Education of Guangdong Province (No. 2018KTSCX047); the Innovative Research and Development Institute of Guangdong (2018B090902009); The “Challenge Cup” Gold Seed Cultivation Project of South China Normal University (22WDKC02; 22WDGC01); 2022 Guangdong-Hong Kong-Macao Greater Bay Area Exchange Programs of SCNU; and Shanwei Municipal Science and Technology Program (2022A010).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. WX performed the methodology, project administration, data curation, validation, and original draft. XZ performed the conceptualization, validation, writing—review, and editing. JL and XC performed the resources, validation, and methodology. LL, JZ, and FC-CL performed the assistance. QR performed the validation and review. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Qiang Ru.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1611 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Zhang, X., Li, J. et al. Scaffolded hierarchical CeVO4/V2CTx-MXene cathode for flexible quasi-solid-state aqueous zinc-ion battery. Ionics 30, 1457–1467 (2024). https://doi.org/10.1007/s11581-023-05327-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05327-x

Keywords

Navigation