Skip to main content

Advertisement

Log in

A facile strategy to unlock the high capacity of vanadium-based cathode for aqueous zinc-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

High-capacity cathode materials are highly important for aqueous zinc-ion batteries (ZIBs). However, the capacity output of cathode materials still remains far from their theoretical values. Herein, we report a facile strategy by integrating a small amount of multi-wall carbon nanotube (MWCNT) into (NH4)2V6O16 vanadium-based ammonium hexavanadate (NVO) that greatly improves the capacity for zinc-ion storage. Specifically, the NVO/MWCNT composite cathode presents a high specific capacity of 462.8 mAh g−1 at 0.5 A g−1 and 120.2 mAh g−1 at 5 A g−1 with excellent cyclic stability of 92.6% capacity retention after 1000 cycles. Additionally, the structural evolution of cathode material and zinc-ion storage mechanism are further analyzed with a series of voltage-dependent spectroscopic investigation. The performance improvement of NVO/MWCNT cathode is ascribed to the enlargement of interfacial area of NVO nanorods with the electrolyte and promotion of electron transfer within NVO cathode. This work gives a new approach for development of cathode material of ZIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma Y, Shang R, Liu Y et al (2023) Enabling fast-charging capability for all-solid-state lithium-ion batteries. J Power Sources 559:232647

    Article  CAS  Google Scholar 

  2. Quilty CD, Wu D, Li W et al (2023) Electron and ion transport in lithium and lithium-ion battery negative and positive composite electrodes. Chem Rev 123(4):1327–1363

    Article  CAS  Google Scholar 

  3. Chen X, Zhang H, Liu JH et al (2022) Vanadium-based cathodes for aqueous zinc-ion batteries: mechanism, design strategies and challenges. Energy Storage Materials 50:21–46

    Article  CAS  Google Scholar 

  4. Lee SH, Han J, Cho TW et al (2023) Valid design and evaluation of cathode and anode materials of aqueous zinc ion batteries with high-rate capability and cycle stability. Nanoscale 15(8):3737–3748

    Article  CAS  PubMed  Google Scholar 

  5. Zhu C, Li P, Xu G et al (2023) Recent progress and challenges of Zn anode modification materials in aqueous Zn-ion batteries. Coord Chem Rev 485:215142

    Article  CAS  Google Scholar 

  6. Li C, Zhang X, He W et al (2020) Cathode materials for rechargeable zinc-ion batteries: from synthesis to mechanism and applications. J Power Sources 449:227596

    Article  CAS  Google Scholar 

  7. De P, Halder J, Priya S et al (2023) Two-dimensional V2O5 nanosheets as an advanced cathode material for realizing low-cost aqueous aluminum-ion batteries. ACS Appl Energy Mater 6(2):753–762

    Article  CAS  Google Scholar 

  8. Wang X, Zhang B, Feng J et al (2020) Cu-MOF-derived and porous Cu0. 26V2O5@ C composite cathode for aqueous zinc-ion batteries. Sustain Mater Technol 26:e00236

  9. Zhang X, Xue F, Sun X et al (2022) High-capacity zinc vanadium oxides with long-term cyclability enabled by in-situ electrochemical oxidation as zinc-ion battery cathode. Chem Eng J 445:136714

    Article  CAS  Google Scholar 

  10. Galy J, Matar SF (2016) Tl (I) to Po (IV) 6s2 lone pairs in tetrahedral, triangular bipyramidal, square pyramidal, octahedral and hexahedral geometries: crystal chemistry and ab initio visualizations and analyses. Prog Solid State Chem 44(2):35–58

    Article  CAS  Google Scholar 

  11. Cao J, Zhang D, Zhang X et al (2022) Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ Sci 15(2):499–528

    Article  CAS  Google Scholar 

  12. Zhang F, Du M, Miao Z et al (2022) Oxygen vacancies and N-doping in organic–inorganic pre-intercalated vanadium oxide for high-performance aqueous zinc-ion batteries. InfoMat 4(11):e12346

    Article  CAS  Google Scholar 

  13. Reddy IN, Akkinepally B, Manjunath V et al (2021) SnO2 quantum dots distributed along V2O5 nanobelts for utilization as a high-capacity storage hybrid material in Li-ion batteries. Molecules 26(23):7262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gu Y, Han Y, Qin Z et al (2022) A strategy to control crystal water content in hydrated vanadium oxide cathode for promoting aqueous rechargeable zinc-ion batteries. J Alloy Compd 911:165102

    Article  CAS  Google Scholar 

  15. Yang Q, Qu X, Cui H et al (2022) Rechargeable aqueous Mn-metal battery enabled by inorganic-organic interfaces. Angew Chem Int Ed 61(35):e202206471

    Article  CAS  Google Scholar 

  16. Jia X, Tian R, Liu C et al (2022) Stability and kinetics enhancement of hydrated vanadium oxide via sodium-ion pre-intercalation. Mater Today Energy 28:101063

    Article  CAS  Google Scholar 

  17. Li P, Wang Y, Xiong Q et al (2023) Manipulating coulombic efficiency of cathodes in aqueous zinc batteries by anion chemistry. Angew Chem e202303292

  18. Zhao X, Mao L, Cheng Q et al (2022) Dual-cation preintercalated and amorphous carbon confined vanadium oxides as a superior cathode for aqueous zinc-ion batteries. Carbon 186:160–170

    Article  CAS  Google Scholar 

  19. Zeng J, Zhang Z, Guo X et al (2019) A conjugated polyaniline and water co-intercalation strategy boosting zinc-ion storage performances for rose-like vanadium oxide architectures. J Mater Chem A 7(37):21079–21084

    Article  CAS  Google Scholar 

  20. Wang HE, Zhao X, Yin K et al (2017) Superior pseudocapacitive lithium-ion storage in porous vanadium oxides@C heterostructure composite. ACS Appl Mater Interfaces 9(50):43665–43673

    Article  CAS  PubMed  Google Scholar 

  21. Zhang S, Chen L, Dong D et al (2022) A m V2O5 with binary phases as high-performance cathode materials for zinc-ion batteries: effect of the pre-intercalated cations A and reversible transformation of coordination polyhedra. ACS Appl Mater Interfaces 14(21):24415–24424

    Article  CAS  PubMed  Google Scholar 

  22. Meng Q, Cai K, Chen Y et al (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285

    Article  CAS  Google Scholar 

  23. Zhang N, Dong Y, Jia M et al (2018) Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett 3(6):1366–1372

    Article  CAS  Google Scholar 

  24. Li C, Yuan W, Li C et al (2021) Boosting Li3V2(PO4)3 cathode stability using a concentrated aqueous electrolyte for high-voltage zinc batteries. Chem Commun 57(35):4319–4322

    Article  CAS  Google Scholar 

  25. Wang T, Li S, Weng X et al (2023) Ultrafast 3D hybrid-ion transport in porous V2O5 cathodes for superior-rate rechargeable aqueous zinc batteries. Adv Energy Mater 13(18):2204358

    Article  CAS  Google Scholar 

  26. Feng Z, Sun J, Liu Y et al (2021) Engineering interlayer space of vanadium oxide by pyridinesulfonic acid-assisted intercalation of polypyrrole enables enhanced aqueous zinc-ion storage. ACS Appl Mater Interfaces 13(51):61154–61165

    Article  CAS  PubMed  Google Scholar 

  27. Jing M, Xu Z, Fang D et al (2019) Anchoring effect of the partially reduced graphene oxide doped electrospun carbon nanofibers on their electrochemical performances in vanadium flow battery. J Power Sources 425:94–102

    Article  CAS  Google Scholar 

  28. Mei X, Zhao Y, Jiang H et al (2023) Multifunctional starch/carbon nanotube composites with segregated structure: electrical conductivity, electromagnetic interference shielding effectiveness, thermal conductivity, and electro-thermal conversion. J Appl Polym Sci e53904

  29. Zeng Z, Wang G, Wolan BF et al (2022) Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Letters 14(1):179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fuente Cuesta A, Dickson SAM, Naden AB et al (2023) Influence of electrode processing and electrolyte composition on multiwall carbon nanotube negative electrodes for sodium ion batteries. J Phys Energy 5:1

    Google Scholar 

  31. Kim JH, Ahn J, Kim HM et al (2023) Highly efficient oxidation of single-walled carbon nanotubes in liquid crystalline phase and dispersion for applications in Li-ion batteries. J Chem Eng 141350

  32. Jin Y, Lee ME, Kim G et al (2023) Hybrid nano flake-like vanadium diselenide combined on multi-walled carbon nanotube as a binder-free electrode for sodium-ion batteries. Materials 16(3):1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bruck AM, Gannett CN, Bock DC et al (2016) The electrochemistry of Fe3O4/polypyrrole composite electrodes in lithium-ion cells: the role of polypyrrole in capacity retention. J Electrochem Soc 164(1):A6260

    Article  Google Scholar 

  34. Gong F, Feng Y, Fang YH et al (2023) Dual-ion Co-intercalation mechanism on a Na2V6O16· 3H2O cathode with a commercial-level mass loading for aqueous zinc-ion batteries with high areal capacity. ACS Appl Mater Interfaces 15:18808–18818

    Article  CAS  PubMed  Google Scholar 

  35. Wei L, Lian R, Wang D et al (2021) Magnesium ion storage properties in a layered (NH4) 2V6O16·1.5H2O nanobelt cathode material activated by lattice water. ACS Appl Mater Interfaces 13(26):30625–30632

  36. Liu X, Ma L, Du Y et al (2021) Vanadium pentoxide nanofibers/carbon nanotubes hybrid film for high-performance aqueous zinc-ion batteries. Nanomaterials 11(4):1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang X, Xi B, Feng Z et al (2019) Layered (NH4) 2V6O16·1.5 H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries. J Mater Chem A 7(32):19130–19139

  38. Wu F, Zheng D, Wang Y et al (2022) Multiscale modulation of vanadium oxides via one-step facile reduction to synergistically boost zinc-ion battery performance. Inorg Chem Front 9(24):6482–6489

    Article  CAS  Google Scholar 

  39. Tao Y, Huang D, Chen H et al (2021) Electrochemical generation of hydrated zinc vanadium oxide with boosted intercalation pseudocapacitive storage for a high-rate flexible zinc-ion battery. ACS Appl Mater Interfaces 13(14):16576–16584

    Article  CAS  PubMed  Google Scholar 

  40. Park HK, Kim G (2010) Ammonium hexavanadate nanorods prepared by homogeneous precipitation using urea as cathodes for lithium batteries. Solid State Ionics 181(5–7):311–314

    Article  CAS  Google Scholar 

  41. Wang L, Huang KW, Chen J et al (2019) Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci Adv 5(10):eaax4279

  42. Hu F, Gu Y, Cui F et al (2021)High-performance (NH4)2V6O16·0.9H2O nanobelts modified with reduced graphene oxide for aqueous zinc ion batteries. Chin Chem Lett 32(12):3793–3798

  43. Jiang X, Liu J, Zhang P et al (2023) Spinel-structured MnV2O4@ nitrogen-doped carbon microspheres for sodium ion batteries with ultra-long cycle stability. J Alloy Compd 959:170594

    Article  CAS  Google Scholar 

  44. Xu YT, Chen MJ, Wang HR et al (2022) A dual conducting network corbelled hydrated vanadium pentoxide cathode for high-rate aqueous zinc-ion batteries. Nanoscale 14(3):1008–1013

    Article  CAS  PubMed  Google Scholar 

  45. Su FY, Tang R, He YB et al (2017) Graphene conductive additives for lithium ion batteries: origin, progress and prospect (in Chinese). Chin Sci Bull 62:3743–3756

    Article  Google Scholar 

  46. Yang W, Yang W, Huang Y et al (2022) Reversible aqueous zinc-ion battery based on ferric vanadate cathode. Chin Chem Lett 33(10):4628–4634

    Article  CAS  Google Scholar 

  47. Chen S, Zhang Y, Geng H et al (2019) Zinc ions pillared vanadate cathodes by chemical pre-intercalation towards long cycling life and low-temperature zinc ion batteries. J Power Sources 441:227192

    Article  CAS  Google Scholar 

  48. Sonar PA, Sanjeevagol SG, Manjanna J et al (2022) Electrochemical behavior of cerium (III) hydroxide thin-film electrode in aqueous and non-aqueous electrolyte for supercapacitor applications. J Mater Sci Mater Electron 33:25787–25795

    CAS  Google Scholar 

  49. Sun R, Dong S, Xu F et al (2022) Co-intercalation strategy of constructing partial cation substitution of ammonium vanadate (NH4)2V6O16 for stable zinc ion storage. Dalton Trans 51(19):7607–7612

    Article  CAS  PubMed  Google Scholar 

  50. Du X, Wang H, Cui X et al (2023) Optimized strategies to enhance electrochemical properties of ammonium vanadates for aqueous Zn ion batteries. Appl Surf Sci 610:155408

    Article  CAS  Google Scholar 

  51. Cui F, Hu F, Yu X et al (2021) In-situ tuning the NH4+ extraction in (NH4)2V4O9 nanosheets towards high performance aqueous zinc ion batteries. J Power Sources 492:229629

    Article  CAS  Google Scholar 

  52. Cui F, Wang D, Hu F et al (2022) Deficiency and surface engineering boosting electronic and ionic kinetics in NH4V4O10 for high-performance aqueous zinc-ion battery. Energy Storage Mater 44:197–205

    Article  Google Scholar 

  53. Nara H, Mukoyama D, Shimizu R et al (2019) Systematic analysis of interfacial resistance between the cathode layer and the current collector in lithium-ion batteries by electrochemical impedance spectroscopy. J Power Sources 409:139–147

    Article  CAS  Google Scholar 

  54. Liao WL, Hung TF, Abdelaal MM et al (2022) Highly efficient sodium-ion capacitor enabled by mesoporous NaTi2(PO4)3/C anode and hydrogel-derived hierarchical porous activated carbon cathode. J Energy Storage 55:105719

    Article  Google Scholar 

  55. Fei H, Wu X, Li H et al (2014) Novel sodium intercalated (NH4)2V6O16 platelets: high performance cathode materials for lithium-ion battery. J Colloid Interface Sci 415:85–88

    Article  CAS  PubMed  Google Scholar 

  56. Abdelaal MM, Hsu HH, Liao WL et al (2023) Hierarchical porous activated carbon anode for dual carbon lithium-ion capacitors: energy storage mechanisms and electrochemical performances. J Taiwan Inst Chem Eng 104912

  57. Yan X, Feng X, Hao B et al (2022) Enhancing the kinetics of vanadium oxides via conducting polymer and metal ions co-intercalation for high-performance aqueous zinc-ions batteries. J Colloid Interface Sci 628:204–213

    Article  CAS  PubMed  Google Scholar 

  58. Tan S, Sang Z, Yi Z et al (2023) Conductive coating, cation-intercalation, and oxygen vacancies co-modified vanadium oxides as high-rate and stable cathodes for aqueous zinc-ion batteries. EcoMat e12326

  59. Fan L, Li Z (2022) Highly stable cathode materials for aqueous Zn ion batteries: synergistic effect of pre-inserted bimetallic ions in vanadium oxide layer. J Alloy Compd 910:164872

    Article  CAS  Google Scholar 

  60. Zhang X, Sun X, Zheng C (2023) Interlayer-modified pseudocapacitive ammonium vanadium with high reversibility and stability enabling high-performance aqueous zinc-ion battery. Chem Eng J 471:144571

    Article  CAS  Google Scholar 

  61. Ma L, Chen S, Long C et al (2019) Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv Energy Mater 9(45):1902446

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21975180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, L., Zhao, W., Li, H. et al. A facile strategy to unlock the high capacity of vanadium-based cathode for aqueous zinc-ion batteries. J Solid State Electrochem 28, 113–123 (2024). https://doi.org/10.1007/s10008-023-05673-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05673-w

Keywords

Navigation