Skip to main content
Log in

Silver sulfide nanosheets: a proficient electrode material for energy storage

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The present work emphasizes the fabrication of pioneering electrodes (α-Ag2S, silver sulfide) for high-performance supercapacitors via simple chemistry approach. α-Ag2S nanomaterials prepared in the present study exhibited a unique morphology with highlighting electrochemical features. When tested as an electrode material in three-cell configuration, α-Ag2S electrode shows excellent rate performance (286.2 C g−1 at a scan rate of 2 mV s−1) with superior cycle life (~91% capacity retention after 10,000 cycles) and possesses a meager charge transfer resistance (0.35 Ω). Also, an asymmetric supercapacitor (ASC, Ag2S//6 M KOH//graphene) was designed using polypropylene as separator. The fabricated ASC could be capable of retaining 80.0% of initial capacitance over 7500 continuous charge/discharge cycles at a practical specific current of 40 A g−1. Such enduring qualities will create a fresh pathway for innovative electrodes in the SC market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Zhang L, Liu D, Wu ZS, Lei W (2020) Micro-supercapacitors powered integrated system for flexible electronics. Energy Storage Mater 32:402–417

    Article  Google Scholar 

  2. Varma S, Sambath Kumar K, Seal S, Rajaraman S, Thomas J (2018) Fiber-type solar cells, nanogenerators, batteries, and supercapacitors for wearable applications. Adv Sci 5(9):1800340

    Article  Google Scholar 

  3. Wang P, Chen X, Sun G, Wang C, Luo J, Yang L, Lv J, Yao Y, Luo W, Zou Z (2021) A capacitor type faradaic junction for direct solar energy conversion and storage. Angew Chemie 133(3):1410–1415

    Article  Google Scholar 

  4. Le VT, Kim H, Ghosh A, Kim J, Chang J, Vu QA, Pham DT, Lee JH, Kim SW, Lee YH (2013) Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7(7):5940–5947

    Article  CAS  PubMed  Google Scholar 

  5. Chao D, Zhu C, Xia X, Liu J, Zhang X, Wang J, Liang P, Lin J, Zhang H, Shen ZX (2015) Graphene quantum dots coated vo2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett 15(1):565–573

    Article  CAS  PubMed  Google Scholar 

  6. Liu Y, Dinh KN, Dai Z, Yan Q (2020) Metallenes: Recent advances and opportunities in energy storage and conversion applications. ACS Mater Lett 2(9):1148–1172

    Article  CAS  Google Scholar 

  7. Choi NS, Chen Z, Freunberger SA, Ji X, Sun YK, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Challenges facing lithium batteries and electrical double layer capacitors. Angew Chemie Int Ed 51(40):9994–10024

    Article  CAS  Google Scholar 

  8. Gao J, Xu C, Tian X, Sun M, Zhao J, Ma J, Zhou H, Xiao J, Wu M (2020) Design bifunctional vanadium carbide embedded in mesoporous carbon electrode for supercapacitor and dye-sensitized solar cell. Sol Energy 206:848–854

    Article  CAS  Google Scholar 

  9. Manopriya S, Hareesh K (2021) The prospects and challenges of solar electrochemical capacitors. J Energy Storage 35:102294

    Article  Google Scholar 

  10. Wei H, Cui D, Ma J, Chu L, Zhao X, Song H, Liu H, Liu T, Wang N, Guo Z (2017) Energy conversion technologies towards self-powered electrochemical energy storage systems: the state of the art and perspectives. J Mater Chem A 5(5):1873–1894

    Article  CAS  Google Scholar 

  11. Borugh BD, Mathieson A, Wen B, Jo C, Deschler F, De Volder M (2020) Photo-rechargeable zinc-ion capacitor using 2D graphitic carbon nitride. Nano Lett 20(8):5967–5974

    Article  Google Scholar 

  12. Gogotsi Y, Penner RM (2018) Energy storage in nanomaterials-capacitive, pseudocapacitve, or battery-like? ACS Nano 12(3):2081–2083

    Article  CAS  PubMed  Google Scholar 

  13. Fleischmann S, Mitchell JB, Wang R, Zhan C, Jiang DE, Presser V, Augustyn V (2020) Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem Rev 120(14):6738–6782

    Article  CAS  PubMed  Google Scholar 

  14. Li K, Feng S, Jing C, Chen Y, Liu X, Zhang Y, Zhou L (2019) Assembled a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chem Comm 55:13773–13776

    Article  CAS  PubMed  Google Scholar 

  15. Wang T, Li K, Le Q, Zhu S, Guo X, Jiang D, Zhang Y (2021) Tuning parallel manganese dioxide to hollow parallel hydroxyl oxidize iron replicas for high-performance symmetric supercapacitors. J Colloid and Inter Sci 594:812–823

    Article  CAS  Google Scholar 

  16. Li K, Liu X, Zheng T, Jiang D, Zhou Z, Liu C, Zhang X, Zhang Y, Losic D (2019) Tuning MnO2 to FEOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chem Eng J 370:136–147

    Article  CAS  Google Scholar 

  17. Li K, Hu Z, Zhao R, Zhou J, Jinc C, Sun Q, Rao J, Yao K, Dong B, Liu X, Zhang Y, Ji J (2021) A Multi dimensional rational design of nickel-iron sulfide and carbon nanotubes on diatomite via synergistic modulation strategy for supercapacitors. J Colloid and Inter Sci 603:799–809

    Article  CAS  Google Scholar 

  18. He Y, Liu D, Zhao H, Wang J, Sui Y, Qi J, Chen Z, Zhang P, Chen C, Zhung D (2021) Carbon-coated NiMn layered double hydroxides/Ni3S2 nanocomposite for high performance supercapacitors. J Energy Storage 41:103003

    Article  Google Scholar 

  19. Zhang X, Wang J, Ji X, Sui Y, Wei F, Qi J, Meng Q, Ren Y, He Y (2020) Nickel cobalt bimetallic metal-organic frameworks ultrathin nanosheets with enhanced performance for supercapacitors. J Alloys and Compds 825:154069

    Article  CAS  Google Scholar 

  20. Zhang X, Wang J, Sui Y, Wei F, Qi J, Meng Q, He Y, Zhung D (2020) Hierarchical nickel/cobalt phosphide/phosphate/carbon nanosheets for high performance supercapacitors. ACS Appl Nano Mater 12:11945–11954

    Article  Google Scholar 

  21. He Y, Zhang X, Sui Y, Qi J, Chen Z, Zhang P, Chen C, Liu W (2021) Constructing Co(OH)F nanorods@NiCo-LDH nanocages derived from ZIF-67 for high performance supercapacitors. Adv Mater Interfaces 8:2100642

    Article  CAS  Google Scholar 

  22. Sahoo S, Ratha S, Rout CS, Nayak SK (2022) Self-charging supercapacitors for smart electronic devices: a concise review on the recent trends and future sustainability. J Mater Sci 57:4399–4440

    Article  CAS  Google Scholar 

  23. Ratha S, Sahoo S, Mane P, Polai B, Sathapathy B, Chakraborty B, Nayak SK (2023) Experimental and computational investigation on the charge storage performance of a novel Al2O3-reduced graphene oxide hybrid electrode. Sci Rep 13:5283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nagamuthu S, Vijayakumar S, Muralidharan G (2014) Ag incorporated Mn3O4/AC nanocomposite based supercapacitor devices with high energy density and power density. Dalt Trans 43(46):17528–17538

    Article  CAS  Google Scholar 

  25. Maheswari N, Muralidharan G (2017) Ag incorporated CeO2 nano cauliflowers for high-performance supercapacitor devices. New J Chem 41(19):10841–10850

    Article  CAS  Google Scholar 

  26. Babu IM, William JJ, Muralidharan G (2020) AgCoO2-Co3O4/CMC cloudy architecture as high performance electrodes for asymmetric supercapacitors. ChemElectroChem 7(2):535–545

    Article  Google Scholar 

  27. Kubie L, King LA, Kern ME, Murphy JR, Kattel S, Yang Q, Stecher JT, Rice WD, Parkinson BA (2017) Synthesis and characterization of ultrathin silver sulfide nanoplatelets. ACS Nano 11(8):8471–8477

    Article  CAS  PubMed  Google Scholar 

  28. He D, Garg S, Wang Z, Li L, Rong H, Ma X, Li G, An T, Waite TD (2019) Silver Sulfide nanoparticles in aqueous environments: formation, transformation and toxicity. Environ Sci Nano 6(6):1674–1687

    Article  CAS  Google Scholar 

  29. Sadovnikov SI, Gusev AI, Rempel AA (2015) Artificial silver sulfide Ag2S: crystal structure and particle size in deposited powders. Superlattices Microstruct 83:35–47

    Article  CAS  Google Scholar 

  30. Iqbal MW, Faisal MM, Hassan UU, Afzal AM, Aftab S, Zahid T, Rehman AU (2022) Facile hydrothermal synthesis of high-performance binary silver-cobalt-sulfide for supercapattery devices. J Energy Storage 52:104847

    Article  Google Scholar 

  31. Feng S, Yang YC, Tuan HY (2022) Silver boosts ultra-long cycle life for metal sulfide lithium ion battery anodes: taking AgSbS2 nanowires as an example. J Colloids & Inter 621:416–430

    Article  Google Scholar 

  32. Mariappan VK, Krishnamoorthy K, Pazhamalai P, Sahoo S, Nardekar SS, Kim SJ (2019) Nanostructured ternary metal chalcogenide based binder free electrodes for high energy density asymmetric supercapacitors. Nanoenergy 57:307–316

    CAS  Google Scholar 

  33. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Envirn Sci 7:1597–1614

    Article  CAS  Google Scholar 

  34. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Sci 343:1210–1211

    Article  CAS  Google Scholar 

  35. Nardekar SS, Krishnamoorthy K, Pazhamalai P, Mariappan VK, Kim SJ (2020) Exceptional interfacial electrochemistry of few layered 2D MoS2 quantum sheets for high performance flexible solid state supercapacitors. J Mater Chem A 8:13121–13131

    Article  CAS  Google Scholar 

  36. Purushothaman KK, Saravanakumar B, Babu IM, Sethuraman B, Muralidharan G (2014) Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors. RSC Adv 4(45):23485–23491

    Article  CAS  Google Scholar 

  37. Babu IM, William JJ, Muralidharan G (2019) Ordered mesoporous Co3O4/CMC nanoflakes for superior cyclic life and ultra high energy density supercapacitor. Appl Surf Sci 480:371–383

    Article  CAS  Google Scholar 

  38. Purushothaman KK, Babu IM, Sethuraman B, Muralidharan G (2013) Nanosheet- assembled NiO microstructures for high-performance supercapacitors. ACS Appl Mater Interfaces 5(21):10767–10773

    Article  CAS  PubMed  Google Scholar 

  39. Kim YY, Walsh D (2010) Metal sulfide nanoparticles synthesized via enzyme treatment of biopolymer stabilized nanosuspensions. Nanoscale 2(2):240–247

    Article  CAS  PubMed  Google Scholar 

  40. Zamiri R, Ahangar HA, Zakaria A, Zamiri G, Shabani M, Singh B, Ferreira JMF (2015) The structural and optical constants of Ag2S semiconductor nanostructure in the far-infrared. Chem Cent J 9(1):4–9

    Article  Google Scholar 

  41. Arulraj A, Ilayaraja N, Rajeshkumar V, Ramesh M (2019) Direct synthesis of cubic shaped Ag2S on Ni Mesh as binder-free electrodes for energy storage applications. Sci Rep 9:10108

    Article  PubMed  PubMed Central  Google Scholar 

  42. Babu IM, William JJ, Muralidharan G (2019) Carboxymethyl cellulose aided fabrication of flaky structured mesoporous β-Co(OH)2/C nanocomposite for supercapacitors. J Mater Sci Electron 30:2107–2117

    Article  CAS  Google Scholar 

  43. Vignesh K, Ganeshbabu M, Puneeth NPN, Mathivanan T, Ramkumar B, Lee YS, Selvan RK (2023) Oxygen-rich functionalized porous carbon by KMnO4 activation on pods of Prosopis juliflora for symmetric supercapacitors. J Energy Storage 72:108216

    Article  Google Scholar 

  44. Babu IM, William JJ, Muralidharan G (2019) Hierarchical β-Co(OH)2/CoO nanosheets: an additive-free synthesis approach for supercapattery applications. Ionics 25:2437–2444

    Article  CAS  Google Scholar 

  45. Purushothaman KK, Babu IM, Saravanakumar B (2017) Hierarchical mesoporous Cox Ni1-x O as advanced electrode material for hybrid supercapacitors. Int J Hydrogen Energy 42(47):28445–28452

    Article  CAS  Google Scholar 

  46. Bulakhe RN, Alfantazi A, Rok Lee Y, Lee M, Shim JJ (2021) Chemically synthesized copper sulfide nanoflakes on reduced graphene oxide for asymmetric supercapacitors. J Ind Eng Chem 101:423–429

    Article  CAS  Google Scholar 

  47. Yoon JH, Kumar YA, Sambasivam S, Hira SA, Krishna TNV, Zeb K, Uddine W, Kumar KD, Obaidat IM, Kim S (2020) Highly efficient copper-cobalt sulfide nano-reeds array with simplistic fabrication strategy for battery-type supercapacitors. J Energy Storage 32:101988

    Article  Google Scholar 

  48. Iqbal MF, Yousef AKM, Hassan A, Hussain S, Ashiq MN, Mahmood-Ul-Hassan, Razaq A (2021) Significantly improved electrochemical characteristics of nickel sulfide nanoplatelets using graphene oxide thinfilm for supercapacitor applications. J Energy Storage 33:102091

    Article  Google Scholar 

  49. Xu W, Liang Y, Su Y, Zhu S, Cui Z, Yang X, Inoue A, Wei Q, Liang C (2016) Synthesis and properties of morphology controllable copper sulphide nanosheets for supercapacitor application. Electrochim Acta 211:891–899

    Article  CAS  Google Scholar 

  50. Zhang J, Li C, Fan M, Ma T, Chen H, Wang H (2021) Two-dimensional nanosheets constituted trimetal Ni-Co-Mn sulfide nanoflower-like structures for high-performance hybrid supercapacitors. Appl Surf Sci 565:150482

    Article  CAS  Google Scholar 

  51. Li K, Hu Z, Zhao R, Zhou J, Jing C, Sun Q, Rao J, Yao K, Dong B, Liu X (2021) A Multi-dimensional rational design of nickel-iron sulfide and carbon nanotubes on diatomite via synergistic modulation strategy for supercapacitors. J. Colloid Interface Sci 603:799–809

    Article  CAS  PubMed  Google Scholar 

  52. Li X, Zhou K, Zhou J, Shen J, Ye M (2018) CuS nanoplatelets arrays grown on graphene nanosheets as advanced electrode materials for supercapacitor applications. J Mater Sci Technol 34(12):2342–2349

    Article  CAS  Google Scholar 

  53. Majudar D (2021) Recent progress in copper sulfide based nanomaterials for high energy supercapacitor applications. J Electroanal Chem 880:114825

    Article  Google Scholar 

  54. Rathinamala I, Babu IM, William JJ, Muralidharan G, Prithivikumaran N (2020) CdS microspheres as promising electrode materials for high performance supercapacitors. Mater Sci Semicond Process 105:104677

    Article  CAS  Google Scholar 

  55. Babu IM, Purushothaman KK, Muralidharan G (2015) Ag3O4 grafted NiO nanosheets for high performance supercapacitors. J Mater Chem A 3(1):420–427

    Article  CAS  Google Scholar 

  56. Fu W, Han W, Zha H, Mei J, Li Y, Zhang Z, Xie E (2016) Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors. Phys Chem Chem Phys 18(35):24471–24476

    Article  CAS  PubMed  Google Scholar 

  57. Zhang J, Feng H, Yang J, Qin Q, Fan H, Wei C, Zheng W (2015) Solvothermal synthesis of three-dimensional hierarchical CuS microspheres from a Cu-based ionic liquid precursor for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces 7(39):21735–21744

    Article  CAS  PubMed  Google Scholar 

  58. Xu X, Song Y, Xue R, Zhou J, Gao J, Xing F (2016) Amorphous CoMoS4 for a valuable energy storage material candidate. Chem Eng J 301:266–275

    Article  CAS  Google Scholar 

  59. Rakhi RB, Alhebshi NA, Anjum DH, Alshareef HN (2014) Nanostructured cobalt sulfide-on-fiber with tunable morphology as electrodes for asymmetric hybrid supercapacitors. J Mater Chem A 2(38):16190–16198

    Article  CAS  Google Scholar 

  60. Ouyang Y, Chen Y, Peng J, Yang J, Wu C, Chang B, Guo X, Chen G, Luo Z, Wang X (2021) Nickel sulfide/activated carbon nanotubes nanocomposites as advanced electrode of high-performance aqueous asymmetric supercapacitors. J Alloys Compd 885:160979

    Article  CAS  Google Scholar 

  61. Long L, Yao Y, Yan M, Wang H, Zhang G, Kong M (2017) And Supercapacitors Ni3S2@polypyrrole composite supported on nickel foam with improved rate capability and cycling durability for asymmetric supercapacitor device applications. J Mater Sci 52(7):3642–3656

    Article  CAS  Google Scholar 

  62. Hu Q, Zou X, Huang Y, Wei Y, Wang Y, Chen F, Xiang B, Wu Q, Li W (2020) Graphene oxide - drove transformation of NiS/Ni3S4 microbars towards Ni3S4 polyhedrons for supercapacitor. J Colloid and Interface Sci 559:115–123

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The author Dr. I. Manohara Babu has conceived the theme and wrote the manuscript. The author Dr. I. Rathinamala contributes in experimental design of the electrodes.

Corresponding author

Correspondence to I. Manohara Babu.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8809 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manohara Babu, I., Rathinamala, I. Silver sulfide nanosheets: a proficient electrode material for energy storage. Ionics 29, 4617–4627 (2023). https://doi.org/10.1007/s11581-023-05202-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05202-9

Keywords

Navigation